
Page 0 of 75

ATFX SIGNAL READER API (C#, PYTHON, MATLAB,
LABVIEW)

 www.crystalinstruments.com | info@go-ci.com

May 16, 2022
Document ver. 2.5

© Crystal Instruments Corporation

Page 1 of 75

Contents

ATFX SIGNAL READER API (C#, PYTHON, MATLAB, LABVIEW) 4

ATFX API PACKAGE 7

Package Contents ...7

How to Install the ATFX API ..7

ATFX API C# CODE EXAMPLES 8

Opening a ATFX File – Start Here ..8

What is a Recording vs. Signal? ..8

Finding the Signal for a particular channel ..9

What is a Frame? ...10

An end-to-end code example ...11

Additional File Components - .TS and .GPS ...12

Opening a TS or GPS File ..13

Reading the Record Properties...13

Calling individual property ..14

GetProperties..15

Reading the GPS Data ...15

Extracting the Date and Time of a Recording ...18

Reading the Channel Table Data ...20

Reading the Signal Properties ..21

Using a List to Store and Recall Signals ..22

Basic Signal Information ...23

Advance Signal Information ..25

Advance Generated Time ..28

Reading the Data Values of a Signal Frame ..30

Reading other Signal Parameters ...32

Reading Merge Information ...36

ATFX API FUNCTION LIST 38

List of Available Modules ...38

Recording Manager Module ..38

ODS Recording Module ..40

ODS Signal Module ...42

DateTimeNano Module ...45

Property Glossary...46

RecordingProperty ...46

Page 2 of 75

SignalProperties ...47

NVHParameterSet Parameter Keys ...48

AoEnvironment ..49

NVHMeasurement ...50

NVHEnvironment ..50

ATFX API CODING LANGUAGES 51

C# Demo Program ...51

Python Demo Script ...57

Importing C# DLL files ...57

Python Script Code Example ...58

LabVIEW Demo Script..62

Importing C# DLL files ...62

LabVIEW Block Diagram Example ..63

Matlab Demo Script ...66

Importing C# DLL files ...66

Matlab Script Code Example ...67

POST ANALYSIS SOFTWARE INTEGRATES ATFX API 68

The Feature that Utilizes ATFX Reader API in PA Software ...69

END USER LICENSE AGREEMENT FOR CRYSTAL INSTRUMENTS SOFTWARE 71

Page 3 of 75

Information in this document is subject to change without notice. No part of this document may be

reproduced or transmitted in any form, for any purpose, without the written permission of Crystal

Instruments Corporation (“Crystal Instruments”).

By installing, copying or using the Software, the user agrees to be bound by the terms of the

Crystal Instruments End User License Agreement which is a legally binding agreement between

the user (“the Licensee”) and Crystal Instruments for the Crystal Instruments software, which

includes software components, tools, and written documentation (“Software”).

Crystal Instruments makes no warranties on the Software, whether express or implied, nor implied

warranties of merchantability or fitness for a particular purpose. Crystal Instruments does not

warrant your data, that the software will meet your requirements, or that the operation will be

reliable or error free. The Licensee of the Software assumes the entire risk of use of the Software

and the results obtained from the use of the software. Crystal Instruments shall not be liable for

any incidental or consequential damages, including loss of data, lost profits, the cost of cover, or

other special or indirect damages.

Copyright © 2005-2022 Crystal Instruments Corporation. All rights reserved.

All trademarks and registered trademarks used herein are the property of their respective holders.

Page 4 of 75

ATFX Signal Reader API (C#, python, matlab, LabView)

The Crystal Instruments (CI) ATFX ODS Signal Reader Application Programming Interface

(API) consists of 2 Windows Dynamic-Linked Libraries (DLL) providing third-party

applications an interface to access the signal data stored in the ASAM Transport Format XML

(ATFX) files.

ATFX files are formatted according to the Association for Standardization of Automation and

Measuring Systems (ASAM) Open Data Services (ODS) standardization. This is a standard

dedicated for storing vibration data and its different forms. CI software natively stores its data

using the ATFX format, for both signals and recordings.

For details about the ATFX ODS format please refer to the official website:

https://www.asam.net/standards/detail/ods/wiki/

The .atfx files are xml-based files which store the signal data along with all the attributes of the

signal data including data and time or recording, length of recording, number of channels,

channel parameters (e.g., input channel sensor and sensitivities), geographic coordinates,

sampling rate, high pass filter, etc. The .atfx files are well-defined for storing both raw time data

as well as processed spectral data, calculated from methods including Fourier Transform,

Frequency Response Functions, Cross-Power Spectrum, Octave Spectrum, etc.

There are 2 additional file types that the .aftx file references that contains the raw data: .ts and

.gps. The .ts file is a TimeStamp recording that contains an accurate measure of when a

recording was saved with accuracy down to nanoseconds. The .gps file is a GPS recording that

contains locational data of where a recording was saved (e.g., latitude, longitude, altitude).

The Signal Reader API provides end-users with a streamlined file reading and browsing library

to decode ATFX, TS and GPS files. Users can integrate the API with their own custom

developed application. Currently, we support Windows-based programs, ideally written in C#.

The same API also supports Python, MatLab and LabView.

https://www.asam.net/standards/detail/ods/wiki/

Page 5 of 75

Page 6 of 75

Page 7 of 75

ATFX API Package
Package Contents
Crystal Instruments will provide a zip file that contains the following:

1. API DLL files

2. API user interface demo program - An executable file that calls ATFX reader API dlls to

access information stored in Crystal Instruments ATFX files

a. Demo program source code written in C#, Python, LabVIEW and Matlab

3. API technical documents

a. API Class Methods Library

b. API Assembly Documentation

How to Install the ATFX API
Extract and place the zip file content anywhere on the computer. And the dll files can be moved

anywhere, so long any custom scripts know the exact file path location of those dll files.

In order for the C# demo program to work, ensure the folder contains the CI.ATFX.Reader

Demo file, CI.ATFX.Reader.dll, and Common.dll.

For the Python and Matlab scripts to work, please edit the scripts and change the file path

location to point to the dll and recording files.

It is recommended to use Matlab version R2021b or later.

Page 8 of 75

For the LabVIEW ATFX API example to work, please use the latest version of LabVIEW, such

as LabVIEW 2021 or 2021 SP1. And use the provided dll files in the LabVIEW ATFX API

Demo -> Private folder.

ATFX API C# Code Examples

The following sections are examples from our CI ATFX Reader C# Demo Program to help users

understand how to utilize our API class methods. Some of the code snippets have been shortened

compared to the actual Demo Program to provide a more concise explanation. These code

samples can be used to quickstart custom software integration with the ATFX API.

There are 3 file types that the ATFX API can open: .atfx, .ts and .gps. The .atfx is the header file

that references .dat, which contains the bulk of the data. It can also reference .ts and .gps files.

Opening a ATFX File – Start Here
To open an ATFX file, use the RecordingManager Class to call OpenRecording, which takes

in a filename and outputs a IRecording object:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

What is a Recording vs. Signal?
In our API, the IRecording object represents the ATFX file, and contains a list of ISignal

objects. Each ISignal corresponds to a given channel and measurement method.

Concept Class Type Example

ATFX file record <IRecording> “C:\Sig001.atfx”

- Properties

<RecordingProperty>

- Signals List<ISignal>

o Signals[0] <ISignal> Block(CH1)

Page 9 of 75

o Signals[1] <ISignal> Block(CH2)

o Signals[2] <ISignal> APS(CH1)

o Signals[3] <ISignal> APS(CH2)

o …

For instance, in the example above, the first Signal stored in the ATFX file corresponds to a

segment of Time Domain data acquired from Channel 1.

Note: in CI terminology, “Block” refers to a contiguous segment of time domain data (usually

collected with sample size that is a power of 2), and “APS” refers to a contiguous segment of

frequency domain data (usually calculated via FFT of a time block). These are the two most

common types of signals in our software.

The example code below shows using the IRecording.Signals property to get a list of signals

from a given ATFX record:

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

In addition, the IRecording object also supports the following properties:

Finding the Signal for a particular channel
Once you have a list of signals, you will want to query the ISignal.Name of the signal to find the

channel and measurement type you are looking for.

For instance, if you want the time block for channel 4, then you want to look for the signal with

the name “Block(CH4)”

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

Name Type Descriptions

Item ISignal Returns the ISignal object at a specified

index

RecordingProperty RecordingProperty Returns a RecordingProperty object with

metadata (ex: CreateTime, Serial Numbers,

etc.)

SignalCount int Returns number of ISignal objects

Signals List<ISignal> This is where the actual data lives. Returns a

list of ISignal objects

Page 10 of 75

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(CH4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(CH4)').First();

What is a Frame?
A Frame is a double[][] array inside the ISignal object, that contains the numerical data (x-

values, y-values) that you want to acquire. Most of the time, a Signal only has one Frame, but in

the case of waterfall plots or 3D plots, there may be multiple frames.

Concept Class Type Example

Signal <ISignal> Block(CH1)

- Frame

<double[][]> Signal.GetFrame(0)

o Frame[0] <double[]> Array of x-values

o Frame[1] <double[]> Array of y-values

o Frame[2] <double[]> Array of z-values

(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,

and (if applicable) the third array is the z-values.

The Frame size (int) is stored in the ISignal.FrameSize property. The full list of ISignal

properties and methods is shown below:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Page 11 of 75

An end-to-end code example
To summarize the above content, here is an example code that opens a recording, finds the signal

for the “Channel 4” time domain data, and reads out the frame data:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(CH4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(CH4)').First();

// Get the frame, which is formatted like [[x1, x2, x3…], [y1, y2, y3…],…]
double[][] frame = signalCh4.GetFrame(0);
double[] xValues = frame[0];
double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Unknown 0

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 12 of 75

Additional File Components - .TS and .GPS
An ATFX file may also come with a .ts and / or .gps where it lists the files as a file component

inside the ATFX file.

In order to extract the data from these types of files users will need to import

ASAM.ODS.ATFXML, which will allow access to ExternalFileComponent class.

using ASAM.ODS.ATFXML;

The file components in the ATFX file, which is now a IRecording object due to the previous

step, is a list of ExternalFileComponent objects. Thus for each ExternalFileComponent, users

will have to create a recording and add to a list to keep track of them.

The CommonRecording.CreateRecording will create a new IRecording object of a specific

RecordingType, whether it is a TimeStampRecording or GPSRecording, allowing access to

the specific type of data stored in a .ts or .gps file.

List<ExternalFileComponent> fileComponents = (rec as
ODSATFXMLRecording).ExternalFiles.FileComponents;

IRecording tsrec = CommonRecording.CreateRecording(fileComponents[0].FileName);

private void ShowRecordings(IRecording rec)
{

List<ExternalFileComponent> fileComponents = (rec as
ODSATFXMLRecording).ExternalFiles.FileComponents;

//Add the initial IRecording object
 lbRecordingDataInfo.Items.Add(rec);

 foreach (ExternalFileComponent externalfile in fileComponents)
 {
 if (!externalfile.FileName.EndsWith(".ts") &&
!externalfile.FileName.EndsWith(".gps"))
 continue;

 IRecording tsrec = CommonRecording.CreateRecording(externalfile.FileName);
 lbRecordingDataInfo.Items.Add(tsrec);

Page 13 of 75

}
}

With a newly created recording of a .ts and / or .gps file, users can access their specific recording

properties and signals from the IRecording properties. These signals also contain their own set of

data and properties that can be stored in a list to keep track of.

private void ShowSignals(IRecording rec)
{
 foreach(ExternalFileComponent externalfile in (rec as
ODSATFXMLRecording).ExternalFiles.FileComponents)
 {
 if (!externalfile.FileName.EndsWith(".ts") &&
!externalfile.FileName.EndsWith(".gps"))
 continue;

 IRecording tsrec=CommonRecording.CreateRecording(externalfile.FileName);
 foreach (ISignal sig in tsrec.Signals)
 {
 lbSignalDataInfo.Items.Add(sig);
 }
 }
}

Opening a TS or GPS File
It is possible to open a .ts and .gps file, given that the RecordingManager OpenRecording will

create a specific type of recording. It is similar to using CommonRecording.CreateRecording.

Thus all that is needed to do is find the file path of the .ts or .gps and send it to the

RecordingManager.Manager.OpenRecording. Without having to access the ATFX external file

components.

RecordingManager.Manager.OpenRecording(string filePath, out IRecording recording);

var recordingPath = “C:\Sig001.ts”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 // Grab data from IRecording
}
var recordingPath = “C:\Sig001.gps”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 // Grab data from IRecording
}

Reading the Record Properties
To read the Record Properties, which contains the ATFX file record information, it is extracted

directly from the IRecording.RecordingProperty using GetProperties. Or by calling the

following properties in the IRecording.RecordingProperty.

Here are the RecordingProperty Class properties:

Page 14 of 75

Calling individual property
DateTime createTime = [IRecording object].RecordingProperty.CreateTime;

string instrument = [IRecording object].RecordingProperty.Instruments;

uint masterSN = [IRecording object].RecordingProperty.MasterSN;

etc.

Name Type Descriptions

CreateTime DateTime When the file was recorded. It is not

when the file is saved. This parameter

can show the time accuracy as high as

second. To obtain the starting

recording time with better accuracy,

please add “StartNanosecond” in

integer that represents the additional

nanoseconds elapsed.

Instruments string The product name used to record/save

data to the file.

MasterSN int Serial number of the master module of

the system when the file was created

MeasurementType MeasurementConfigType Measurement type of the file

RecordingName string Name of the recording file

DeviceSNs string Serial numbers of the 1 or many

modules used in the recording

RecordingPath string Recording file save path

RecordingType RecordingType The type of recording based on its file

extension

RecordingTypeName string Recording type name based on its file

extension

SavingVersion Version EDM version number when the file

was created.

TestNote string Test notes given by the user before the

test ran

User string The EDM account name when the file

was created.

Page 15 of 75

GetProperties
The GetProperties function is useful in getting a list of various data types in the

RecordingProperty class.

var properties = [IRecording object].RecordingProperty.GetProperties(BindingFlags
bindingAttr);

private void ShowContents(DataGridView grid, object item)
{
 grid.Rows.Clear();

var props = item.GetType().GetProperties(BindingFlags.Instance |
 BindingFlags.Public);

 foreach (var prop in props)
 {
 //skip RecordingProperties property
 if (prop.Name == "RecordingProperties") continue;
 var content = prop.GetValue(item, null)?.ToString();
 if (!string.IsNullOrEmpty(content))
 {
 grid.Rows.Add(prop.Name, content);
 }
 }
}

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowContents(dataGridRecord, rec.RecordingProperty);
}

Reading the GPS Data
To read the GPS data, it is extracted from the IRecording object as a

ODSNVHATFXMLRecording object and locating the Measurement and Environment

property. These properties are AoMeasurement and AoEnvironment, which can be converted

into NVHMeasurement and NVHEnvironment.

Page 16 of 75

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

In order to use NVHMeasurement and NVHEnvironment, users must import ASAM.ODS.NVH;

using ASAM.ODS.NVH;

Here are the NVHMeasurement Class properties:

Here are the NVHEnvironment Class properties:

Here are the AoEnvironment Class functions:

Name Type

Altitude double

GPSEnabled bool

Latitude double

Longitude double

MeasurementBegin DateTime

MeasurementEnd DateTime

NanoSecondElapsed int

Name Type

FirmwareVersion string

InstruSoftwareVersion string

HardwareVersion string

BitwareVersion string

TimeZone string

Name Return Type Descriptions

GetLocalTime(DateTime) DateTime Get time in local format

GetUTCTime(DateTime) DateTime Get time in UTC format

Page 17 of 75

The code snippet below shows the extraction of GPS related data.

private void ShowGPSInfo(IRecording rec)
{
 if (rec is ODSNVHATFXMLRecording nvhRec)
 {
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

 NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

 bool bGPS = nvhMeasurement.GPSEnabled;

 if (bGPS)
 {
 dgvRecInfo.Rows.Add("GPS Enabled", bGPS);
 double lng = nvhMeasurement.Longitude;
 double lat = nvhMeasurement.Latitude;
 double alt = nvhMeasurement.Altitude;
 double nano = nvhMeasurement.NanoSecondElapsed;

 dgvRecInfo.Rows.Add("Longitude", lng);
 dgvRecInfo.Rows.Add("Latitude", lat);
 dgvRecInfo.Rows.Add("Altitude", alt);
 dgvRecInfo.Rows.Add("Nanoseconds Elapsed", nano);
 }

 if (!String.IsNullOrEmpty(nvhRec.Environment.TimeZone))
 {
 dgvRecInfo.Rows.Add("Time Zone", nvhRec.Environment.TimeZone);
 }

 dgvRecInfo.Rows.Add("Created Time (Local)", nvhRec.RecordingProperty.CreateTime);
 dgvRecInfo.Rows.Add("Created Time (UTC)",
nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime));

 if (!String.IsNullOrEmpty(nvhEnvironment.InstruSoftwareVersion))
 {
 dgvRecInfo.Rows.Add("Instrument Software Version",
nvhEnvironment.InstruSoftwareVersion);
 dgvRecInfo.Rows.Add("Hardware Version", nvhEnvironment.HardwareVersion);
 dgvRecInfo.Rows.Add("Firmware Version", nvhEnvironment.FirmwareVersion);
 dgvRecInfo.Rows.Add("Bit Version", nvhEnvironment.BitVersion);
 }
 }
}

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowGPSInfo(rec);
}

Page 18 of 75

Extracting the Date and Time of a Recording
To extract and read the time data that a recording has, users will have to import and use the

DateTimeNano object, which is an extension of the DateTime that includes nanosecond data.

To use the DateTimeNano class, users will need to import Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are omitted:

The following code snippet shows how to extract, create and display the DateTimeNano object

properties.

private void ShowDateTimeNano(IRecording rec, bool isLocal)
{

Name Type Descriptions

IsNanoTime DateTime Gets whether nanoseconds exists / not

equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time

and nanosecond time

Milisecond.Microsecond.Nanosecond

000/000/000

Page 19 of 75

 if (rec is ODSNVHATFXMLRecording nvhRec)
 {
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;
 NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;
 DateTimeNano createTimeUTC;
 if (isLocal)
 {
 createTimeUTC = new DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);
 }
 else
 {
 createTimeUTC = new
DateTimeNano(nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime),
 nvhMeasurement.NanoSecondElapsed);
 }
 dgvRecInfo.Rows.Add("Year", createTimeUTC.Year);
 dgvRecInfo.Rows.Add("Month", createTimeUTC.Month);
 dgvRecInfo.Rows.Add("Day", createTimeUTC.Day);
 dgvRecInfo.Rows.Add("Hour", createTimeUTC.Hour);
 dgvRecInfo.Rows.Add("Minute", createTimeUTC.Minute);
 dgvRecInfo.Rows.Add("Second", createTimeUTC.Second);
 dgvRecInfo.Rows.Add("Millisecond", createTimeUTC.Millisecond);
 dgvRecInfo.Rows.Add("IsNanoTime", createTimeUTC.IsNanoTime);
 dgvRecInfo.Rows.Add("NanoSeconds", createTimeUTC.ms_us_ns);
 dgvRecInfo.Rows.Add("TotalNanosec", createTimeUTC.TotalNanosec);
 dgvRecInfo.Rows.Add("Date Time", createTimeUTC.DateTime);
 dgvRecInfo.Rows.Add("TimeOfDay", createTimeUTC.TimeOfDay);
 dgvRecInfo.Rows.Add("ToNanoString()", createTimeUTC.ToNanoString());

 int ms = (int)(createTimeUTC.ms_us_ns / 1e6);
 int us = (int)(createTimeUTC.ms_us_ns / 1e3 % 1e3);
 int ns = (int)(createTimeUTC.ms_us_ns % 1e3);
 string customFormat = string.Format("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}",
createTimeUTC.Year, createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour,
createTimeUTC.Minute, createTimeUTC.Second, ms, us, ns);
 dgvRecInfo.Rows.Add("Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns", customFormat);
 }
}

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowDateTimeNano(rec, false);
}

Page 20 of 75

Reading the Channel Table Data
To read the Channel Table data, it is extracted from the IRecording object as a

ODSNVHATFXMLRecording object and locating the specific property, ChnSensitivities.

(Apologies for the spelling error.) It can also be converted into a NVHTestEquipmentPart.

ODSNVHATFXMLRecording odsRec = rec as ODSNVHATFXMLRecording;

ChannelSensitivity eq in odsRec.ChnSensitivities[0];

NVHTestEquipmentPart channel = eq.EquipmentPart;

The ODSNVHATFXMLRecording and ChannelSensitivity class already comes with the

importation of EDM.Recording and EDM.RecordingInterface.

However, there are also additional imports, such as the ASAM.ODS.NVH, that will be used in

this section.

using ASAM.ODS.NVH;

Here are the NVHTestEquipmentPart Class properties:

Name Type

ChannelID int

ChannelStatus int

ChannelType int

DtType int

EUFactor double

EUName string

InputRange int

QuantityName string

SampleRate single

Sensitivity single

SensorRange single

SensorSN string

Weighting single

Page 21 of 75

Below shows a much simpler way of extracting data directly from the NVHTestEquipmentPart

object compared to the demo program.

private void ShowChannelTable(IRecording rec)
{

foreach (ChannelSensitivity eq in odsRec.ChnSensitivities)
 {
 NVHTestEquipmentPart channel = eq.EquipmentPart;

 if (channel == null) continue;

 dataGridChannel.Rows.Add(channel.LabelTitle,
 channel.ChannelType.ToChannelTypeString(),
 channel.QuantityName,
 channel.EUName,
 $"{channel.Sensitivity}(mv/{channel.EUName})",
 channel.ChannelStatus.ToChannelStatusString(),
 channel.InputRange.ToChannelRangeString(),
 channel.SensorSN,
 channel.SensorRange,
 channel.Intergration.ToChannelIntegrationString(),
 channel.Weighting);
 }
}

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowChannelTable(rec);
}

Reading the Signal Properties
To read the Signal Properties, which contains the ATFX file signal property information, it is

extracted directly from the ISignal.Properties using GetProperties or GetFields.

The ISignal interface already comes with the importation of EDM.RecordingInterface.

Here are the ISignal Class properties:

Name Type Descriptions

Dimension int Get the signal dimension

Page 22 of 75

Using a List to Store and Recall Signals
When working with the Signals list from IRecording object, it would be best to store it in a list to

easily reference to it, especially when selecting which signal properties or data to display.

private void ShowSignals(IRecording rec)
{
 foreach (ISignal sig in rec.Signals)
 {
 lbSignalDataInfo.Items.Add(sig);

}
}

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Unknown 0

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 23 of 75

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowSignals(rec);
}

Basic Signal Information
Here are the SignalProperties Class properties:

Name Type Descriptions

BlockSize int Get the block size Number of time

data points captured in the signal

DeviceSN string The recording instrument serial

numbers

Duration string Get the signal duration Amount of

time covered by the signal

GeneratedTime DateTimeNano Get the signal generated time from

instrument

Instruments string Get the instrument

MeasurementType MesaurementConfigType Get the MeasurementType

RecordingProperties RecordingProperty Get the RecordingProperties

SamplingRate string Get the sampling rate Number of data

samples acquired per second

SignalName string Get the signal name

SignalType SignalType Get the signal type

Unknown 0

Time 1

Frequency 2

Trend 3

SoftwareVersion version Get the software version

Page 24 of 75

Calling individual property
ISignal signal = [IRecording object].Signals[0];

Common.DateTimeNano dateTimeNano = signal.Properties.GeneratedTime;

MeasurementConfigType measureType = signal.Properties.MeasurementType;

SignalType type = signal.Properties.SignalType;

etc.

GetProperties

The GetProperties function is useful in getting a list of various data types in the SignalProperties

class.

The following code snippets display the signal information.

var properties = [IRecording object].Item[0].GetProperties(BindingFlags bindingAttr);

private void ShowContents(DataGridView grid, object item)
{
 grid.Rows.Clear();

 var props = item.GetType().GetProperties(BindingFlags.Instance |
 BindingFlags.Public);

 foreach (var prop in props)
 {
 //skip RecordingProperties property
 if (prop.Name == "RecordingProperties") continue;
 var content = prop.GetValue(item, null)?.ToString();
 if (!string.IsNullOrEmpty(content))
 {
 grid.Rows.Add(prop.Name, content);
 }
 }
}

private void BtnSignalBasicInfo_Click(object sender, EventArgs e)
{
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties);
 }
}

UnitX string Get the X unit

UnitY string Get the Y unit

UnitZ string Get the Z unit

Page 25 of 75

Advance Signal Information
Here are the DSASignalProperty Class fields:

Name Type Descriptions

averageMode int average mode index when signal data

saved

averageNumber int average number when signal data

saved

blocksizeLine string block size line when signal data saved

elapsedTime double elapsed time when signal data saved

frequencyIndex int sample rate index when signal data

saved

outputPeak double output peak when signal data saved

overlapRatioIndex int overlap ratio index when signal data

saved

rpmTacho1 double rpm tacho 1 when signal data saved

rpmTacho2 double rpm tacho 2 when signal data saved

testLastSavedTime DateTime last saved time of the test

testName string test name

totalFrameNumber int total frame number(or current average

number) when signal data saved

windowTypeIndex int window type index when signal data

saved

Page 26 of 75

And here are the VCSSignalProperty Class fields:

Name Type Descriptions

controlPeak double control peak (m/s2) when data saved

controlRMS double current control RMS (m/s2) when data

saved

currentFrequency double current frequency when data saved

(Sine)

curRepeat int current repeat times when data saved

displacementPkPk double displacement peak peak (m) when data

saved

drivePK double current drive peak (voltage) when data

saved

fullLevelElapsed double full level elapsed when data saved

(time in Random/Sine/TDR, pulses in

Shock system)

level double current VCS level when data saved

nextDrivePK double next predicted drive peak (voltage)

nextLevel double next predicted VCS level

pulseWidth double main pulse width in classic Shock

remaining double remaining time when data saved (time

in Random/Sine/TDR, pulses in Shock

system)

remainingCycle double remaining cycles when data saved

(Sine)

sweepNumber int sweep number when data saved (Sine)

sweepRate double sweep rate when data saved (Sine)

sweepType int sweep type when data saved (Sine)

targetPeak double target peak (m/s2) when data saved

targetRMS double target RMS (m/s2) when data saved

testLastRunTime DateTime last run time of the test

testLastSavedTime DateTime last saved time of the test

testName string test name

totalCycle double total cycles when data saved (Sine)

Page 27 of 75

Calling individual field
ISignal signal = [IRecording object].Signals[0];

int avgMode = signal.Properties.dsaProperties.averageMode;

string name = signal.Properties.dsaProperties.testName;

double level = signal.Properties.vcsProperties.level;

double remaining = signal.Properties.vcsProperties.remaining;

string name = signal.Properties.vcsProperties.testName;

etc.

GetFields

Here is a code snippet for displaying the advance signal information, depending on if the signal

comes from VCS or DSA.

For the showPublicField, it can be set to false to show the basic signal information or to true to

show the advance signal information.

var fields = [IRecording object].Item[0].GetFields(BindingFlags bindingAttr);

private void ShowContents(DataGridView grid, object item, bool showPublicField = false)
{
 grid.Rows.Clear();

 if (showPublicField)
 {
 var fields = item.GetType().GetFields(BindingFlags.Instance |
 BindingFlags.Public);

 foreach (var field in fields)
 {
 //skip multiSineTonesInfo field
 if (field.Name == " multiSineTonesInfo") continue;
 var content = field.GetValue(item)?.ToString();
 if (!string.IsNullOrEmpty(content))
 {
 grid.Rows.Add(field.Name, content);
 }
 }
 }
}

private void BtnSignalAdvInfo_Click(object sender, EventArgs e)
{

totalElapsed double total elapsed time when data saved

(time in Random/Sine/TDR, pulses in

Shock system)

totalRepeat int total repeat times when data saved

velocityPk double velocity peak (m/s) when data saved

Page 28 of 75

 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 //if signal is a dsa signal, dsa properties should not be empty
 if (signal.Properties.dsaProperties != null)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties.dsaProperties, true);
 }
 //if signal is a vcs signal, vcs properties should not be empty
 if (signal.Properties.vcsProperties != null)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties.vcsProperties, true);
 }
 }
}

Advance Generated Time
The Generated Time property for Signal is a DateTimeNano object, which is imported from

Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are omitted:

Name Type Descriptions

Page 29 of 75

Calling individual property
ISignal signal = [IRecording object].Signals[0];

uint ms_us_ns = signal.Properties.GeneratedTime.ms_us_ns;

ulong totalNanoSec = signal.Properties.GeneratedTime.TotalNanosec;

int seconds = signal.Properties.GeneratedTime.Second;

etc.

GetProperties

The GetProperties function is useful in getting a list of various data types in the DateTimeNano

class.

DateTimeNano generatedTime = [ISignal object].Properties.GeneratedTime;
private void BtnShowGeneratedTime_Click(object sender, EventArgs e)
{
 lbSignalParameters.Visible = false;
 signalDataInfo = SignalDataInfo.SignalGeneratedTime;
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties.GeneratedTime);
 }
}

IsNanoTime DateTime Gets whether nanoseconds exists / not

equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time

and nanosecond time

Milisecond.Microsecond.Nanosecond

000/000/000

Page 30 of 75

Reading the Data Values of a Signal Frame
A signal frame is a snapshot of measurement data that consists of X, Y and sometimes Z data.

Each of these frames consists of an array with the size according to Signal.FrameSize property.

Each signal usually has 1 Frame (unless it is a waterfall or 3D plot), and the Signal.FrameCount

property describes how many frames are in the signal.

The X and Y formulate points in a chart where X can be Time or Frequency and Y can be a

variety of engineering units, such as Voltage, Acceleration, Velocity, Displacement, Force, etc.

And the Z is generally the time since the device start measuring.

Thus, if a user were to graph the the X and Y data, they would get a plot graph like below.

A Frame object is stored inside a parent Signal object according the following structure:

Concept Class Type Example

Signal <ISignal> Block(CH1)

- Frame

<double[][]> Signal.GetFrame(0)

o Frame[0] <double[]> Array of x-values

o Frame[1] <double[]> Array of y-values

o Frame[2] <double[]> Array of z-values

(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,

and (if applicable) the third array is the z-values.

More information about the Frame (e.g., Frame Size) can be queried from the ISignal parent

object. The ISignal parent object for the Frame also supports the following additional

properties:

Name Type Descriptions

Page 31 of 75

An end-to-end example of reading a Frame from a Signal, which can be read from a Recording:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Unknown 0

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 32 of 75

// To get the Channel 4 signal, select the signal whose name is ‘Block(CH4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(CH4)').First();

// Get the frame, which is formatted like [[x1, x2, x3…], [y1, y2, y3…],…]
double[][] frame = signalCh4.GetFrame(0);
double[] xValues = frame[0];
double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Reading other Signal Parameters
To read other Signal Parameters that isn’t the general properties or frame data, it is extracted

from the IRecording.Signals or IRecording.Item[#] using the GetParameter<T> with a

NVHParameterSet parameter key.

There is a large list of fields in NVHParameterSet, thus it is recommended to find these fields in

the CI ATFX Reader Class Methods.chm file under ASAM.ODS.NVH -> NVHParameterSet

Class -> NVHParameterSet Fields.

In order to use the NVHParameterSet Class, users need to import ASAM.ODS.NVH.

There are also additional imports, such as the Common.Spider and EDM.Utils, that will be used

in this section.

Page 33 of 75

using ASAM.ODS.NVH;

using Common.Spider;

using EDM.Utils;

EDM.Utils will provide a JSON deserialization method used to deserialize the JSON string

from the parameter values.

And depending on which parameter, such as Test Profile, the Common.Spider provides two

classes, ProfileElemDsp and SpiderChannelLimitElem, to hold the deserialized JSON string

data.

Reading and Displaying Individual Parameter Key
ISignal signal = [IRecording object].Signals[0];

string signalParam = signal.GetParameter<string>(NVHParameterSet.testProfile)

List<ProfileElemDsp> profile =
Utility.JsonDeserialize<List<ProfileElemDsp>>(signalParam);

string signalParam = signal.GetParameter<string>(NVHParameterSet.fullLevelElapsed);

string signalParam = signal.GetParameter<string>(NVHParameterSet.sampleRate);

Page 34 of 75

etc.

Reading a Parameter Key Data Type
ISignal signal = [IRecording object].Signals[0];

string sigParamType = sig.GetParameterType(NVHParameterSet.sampleRate);

DT_FLOAT

string sigParamType = sig.GetParameterType(NVHParameterSet.fullLevelElapsed);
DT_DOUBLE

etc.

Reading and Displaying a List of Parameter Keys

Given that there is a list of parameters for each signal, it would be better to store the list of

parameters into another list object for the user interface and other means of accessing the data.

private void ShowCandidateParameters()
{
 List<object> keyParameters = new List<object>();

 foreach (var f in typeof(NVHParameterSet).GetFields(BindingFlags.Public |
 BindingFlags.Static))
 {
 if((f.Attributes & FieldAttributes.Literal) == FieldAttributes.Literal &&
 f.FieldType == typeof(string))
 {
 object val = f.GetValue(null)?.ToString();
 keyParameters.Add(val);
 }
 }

 if (keyParameters.Count > 0)
 lbSignalParameters.Items.AddRange(keyParameters.ToArray());
 if (lbSignalParameters.Items.Count > 0)
 lbSignalParameters.SelectedIndex = 0;
}

Then, with the same as the previous Reading Signal sections, include the code snippet from

Reading the Signal Properties – Using a List to Store and Recall Signals to read the list of

signals from IRecording.

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowSignals(rec);
 ShowCandidateParameters();
}

Page 35 of 75

private void ShowParameters(DataGridView grid, ISignal sig, string parameterKey)
{
 grid.Rows.Clear();
 clmSignalProp.HeaderText = "Data Type";

clmSignalPropValue.HeaderText = "Value";

 if (sig != null && !string.IsNullOrEmpty(parameterKey))
 {
 string signalParam = sig.GetParameter<string>(parameterKey);
 string sigParamType = sig.GetParameterType(parameterKey);

 if (!string.IsNullOrEmpty(signalParam))
 {
 if (parameterKey == NVHParameterSet.testProfile)
 {
 clmSignalProp.HeaderText = "Frequency";
 clmSignalPropValue.HeaderText = "Profile";
 List<ProfileElemDsp> profile =
 Utility.JsonDeserialize<List<ProfileElemDsp>>(signalParam);

 foreach(var entry in profile)
 {
 grid.Rows.Add(entry.fFreq, entry.fProfile, entry.fHighAbort,
 entry.fHighAlarm, entry.fLowAlarm, entry.fLowAbort);
 }
 }
 else if (parameterKey == NVHParameterSet.testAbortLimit ||
 parameterKey == NVHParameterSet.testAlarmLimit ||
 parameterKey == NVHParameterSet.testNotchLimit)
 {
 clmSignalProp.HeaderText = "Frequency";
 clmSignalPropValue.HeaderText = "Acc";
 SortedList<string, List<SpiderChannelLimitElem>> limits =
 Utility.JsonDeserialize<SortedList<string,
 List<SpiderChannelLimitElem>>>(signalParam);

 foreach (var channelLimit in limits)
 {
 grid.Rows.Add(channelLimit.Key);

Page 36 of 75

 for (int i = 0; i < channelLimit.Value.Count; i++)
 {
 grid.Rows.Add(channelLimit.Value[i].fStartFreq,
 channelLimit.Value[i].fStartVal);
 if(i+1 == channelLimit.Value.Count)
 {
 grid.Rows.Add(channelLimit.Value[i].fEndFreq,
 channelLimit.Value[i].fEndVal);
 }
 }

 grid.Rows.Add();
 }
 }
 else
 {
 grid.Rows.Add(sigParamType, signalParam);
 }
 }
 }
}

private void BtnSignalParam_Click(object sender, EventArgs e)
{
 string parameterKey = lbSignalParameters.SelectedItem as string;

if (lbSignalDataInfo.SelectedItem is ISignal signal &&
 !string.IsNullOrEmpty(parameterKey))

 {
 ShowParameters(dgvSignalDataInfo, signal, parameterKey);
 }
}

Reading Merge Information
Depending on the ATFX file, it can contain multiple other atfx files. It is still converted into a

singular IRecording object with the RecordingManager OpenRecording then converted into a

ODSNVHATFXMLRecording to access the ODSInstance and its Measurement property.

Here are the NVHMeasurement Class properties:

Page 37 of 75

The code snippet below shows the extraction and display of data.

private void ShowMergeInfo(IRecording rec)
{
 try
 {
 dgvMergeInfo.SuspendLayout();
 dgvMergeInfo.Rows.Clear();
 if (rec is ODSNVHATFXMLRecording atfxRec)
 {
 NVHMeasurement measurement = atfxRec.ODSInstance.Measurement as NVHMeasurement;
 if (measurement?.SigMap_SrcName.Count > 0)
 {
 if (!(rec is ODSNVHATFXMLRecording))
 return;
 if ((rec as ODSNVHATFXMLRecording).ODSInstance.Measurement as NVHMeasurement ==
null)
 return;

 if (measurement.SigMap_SrcName.Count == 0)
 {
 dgvMergeInfo.Columns[0].Visible = false;
 dgvMergeInfo.Columns[1].Visible = false;
 for (int i = 0; i < rec.Signals.Count; i++)
 {
 dgvMergeInfo.Rows.Add(null, null, rec.RecordingProperty.RecordingName,
rec.Signals[i].Properties.SignalName);
 }
 }
 else
 {
 dgvMergeInfo.Columns[0].Visible = true;
 dgvMergeInfo.Columns[1].Visible = true;
 int counter = 0;
 for (int i = 0; i < measurement.SigMap_SrcName.Count; i++)
 {
 int SigMapChCount = Convert.ToInt32(measurement.SigMap_ChCount[i]);
 for (int j = 0; j < SigMapChCount; j++)
 {
 dgvMergeInfo.Rows.Add(measurement.SigMap_SrcName[i],
measurement.SigMap_ChName[j + counter],

Name Type

Altitude double

GPSEnabled bool

Latitude double

Longitude double

MeasurementBegin DateTime

MeasurementEnd DateTime

NanoSecondElapsed int

Page 38 of 75

 rec.RecordingProperty.RecordingName, rec.Signals[j +
counter].Properties.SignalName);
 }
 counter += SigMapChCount;
 }
 }
 this.Refresh();
 }
 }
 }
 finally
 {
 dgvMergeInfo.ResumeLayout();
 dgvMergeInfo.PerformLayout();
 }
}

ATFX API Function List
The following section is a short preview of the various classes and interfaces in the API. For a

more detailed view, please refer to the CI ATFX Reader API Class Methods.chm file.

List of Available Modules
Module Descriptions

Recording Manager Provide functions to manage/operate Recording Objects, e.g.

open or close Recording Objects

ODS Recording Provide functions to access properties of Recording Objects

ODS Signal Provide functions to access properties of Signal Objects

DateTimeNano Provide functions to create a DateTimeNano object with

similarities to DateTime but with more accuracy up to

nanoseconds.

Recording Objects refer to files recorded/saved in EDM.

Signal Objects refer to signals included in recording objects.

Recording Manager Module

Name to Be Called Type Descriptions

OpenRecording Method Open the file

Page 39 of 75

1. OpenRecording

a. Description

Find and open the file based on the given file path. An IRecording object and the result

are returned.

Parameters Type Description

recordingPath String The path where the file is located.

recording IRecording The variable which the returned object is

store to.

b. Return

Type Description

bool true: the file is loaded

false: failed to load the file

Example:

2. CloseRecording

a. Description

Find and close the file based on the given file path. The result is returned.

Parameters Type Description

recordingPath string The path where the file is located.

b. Return

Type Description

bool true: the file is closed

false: failed to close the file

CloseRecording Method Close the file

Page 40 of 75

Example:

ODS Recording Module

Name to Be Called Type Description

RecordingProperty Property Properties of the file

Signals Property Signals included in the file

ODSInstance Property ODS instances included in the file

The IRecording object can be converted to ODSRecording object before accessing its properties.

1) RecordingProperty

a. Descriptions

RecordingProperty contains properties of the file (the Recording object), listed below:

Attribute Name Descriptions

User The EDM account name when the file was

created.

Instruments The product name used to record/save data to the

file.

TestNote Test notes given by the user before the test ran

Name File Name

RecordingPath File Path

Version EDM version number when the file was created.

CreateTime This parameter defines when the signal was

recorded. It is not when the file is saved. This

parameter can show the time accuracy as high as

second. To obtain the starting recording time with

better accuracy, please add

“NanoSecondElapsed” in integer that represents

the additional nanoseconds elapsed.

Page 41 of 75

MasterSN Serial number of the master module of the system

when the file was created

UserAnnotation Annotation added by the user

MeasurementType Measurement type of the file

Example:

2) Signals

a. Descriptions

It returns the list of signals saved in the file. Each signal can be accessed by the ODS

Signal module.

Example:

3) ODSInstance

3.1 Descriptions

The ODSInstance attribute can be accessed only after the IRecording object returned by

the Recording Manager module is converted to ODSRecording object.

Each ODS attributes can be accessed through the ODSInstance attribute, e.g.

ODSInstance.Measurement.Equipments return the list of EquipmentPart, which

corresponds to an input channel.

Example:

Page 42 of 75

ODS Signal Module

Name to Be Called Type Descriptions

Name Attirbute Signal Name

Type Attirbute Signal type, time/frequency domain

FrameCount Attirbute Total number of frames in the signal

FrameSize Attirbute Size of each frame

UnitX Attirbute Unit of X-axis

UnitY Attirbute Unit of Y-axis

Properties Attirbute Signal properties. Different signal types have

different properties

GetFrame Method Return data of the specified frame of the signal

A snapshot of measurement data consisting of X,

Y and sometimes Z values.

GetParameter<T> Method Return the specified parameter by the given

name.

GetParameterType Method Return the specified parameter data type by the

given name.

1. Properties

a. Descriptions

Time domain and frequency domain signals have different signal properties.

For time domian signals, Properties refer to SignalProperties.

For frequency domian signals, Properties refer to FrequencyDomainSignalProperties.

Example:

Page 43 of 75

2. GetFrame

a. Descriptions

Return data of the specified frame of the signal

Parameters Type Descriptions

frameIndex int Index of the frame

b. Return

Type Descriptions

double[][] Signal data

double[0] contains values of X-axis

double[1] contains values of Y-axis

double[2] contains values of Z-axis (if available)

Example:

Page 44 of 75

3. GetParameter<T>

a. Descriptions

Search through all ODS parameters for the one including the keyword (parameterKey). It

will be returned if found.

Parameters Type Descriptions

T Parameter type Specifies the type of the

object* to be returned

parameterKey string Keyword of the object* to be

returned

*An object refers to an ODS parameter of the signal.

b. Return

Type Descriptions

T The type of the returned object* is determined by the object*

found in ODS parameters. If it is not found according to the

keyword, the original type is returned.

*An object refers to an ODS parameter of the signal.

Example:

Page 45 of 75

DateTimeNano Module

Constructors Descriptions

DateTimeNano(DateTime, uint) Using this Constructor with a

IRecording.RecordingProperty.CreateTime and a

NVHMeasurement.NanoSecondElapsed will create a

DateTimeNano object that contains a DateTime with

ms_us_ns.

Example:

var recordingPath = @”C:\REC001.atfx”;

if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{

 ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new DateTimeNano(nvhRec.Environment.GetUTCTime
(nvhRec.RecordingProperty.CreateTime), nvhMeasurement.NanoSecondElapsed);

}

Name to Be Called Type Descriptions

IsNanoTime bool Gets whether ms_us_ns exists / not equal to zero

TotalNanoSeconds ulong Get TotalSeconds in Nano Seconds

ToNanoString string Gets a string in the format of "DateTime

Milisecond.Microsecond.Nanosecond"

ms_us_ns uint We use this NanoSeconds==0 Distinguish

between normal time and nanosecond time

Milisecond.Microsecond.Nanosecond

Page 46 of 75

000/000/000

Example:

var recordingPath = @”C:\REC001.atfx”;

if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new
DateTimeNano(nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime),
nvhMeasurement.NanoSecondElapsed);

Console.WriteLine(createTimeUTC.IsNanoTime);

Console.WriteLine(createTimeUTC.ms_us_ns);

Console.WriteLine(createTimeUTC.TotalNanosec);

Console.WriteLine(createTimeUTC.ToNanoString());

}

Property Glossary
The following properties and functions can be found in the chm file and are listed here for a

quicker reference and to highlight the most important properties and functions for the ATFX

API.

RecordingProperty
Property Type Description

CreateTime DateTime This parameter defines when the signal

was recorded. It is not when the file is

saved. This parameter can show the

time accuracy as high as second. To

obtain the starting recording time with

better accuracy, please add

“NanoSecondElapsed” in integer that

represents the additional nanoseconds

elapsed.

DeviceSNs string Serial numbers of the 1 or many

modules used in the recording

Instruments string The product name used to record/save

data to the file.

MasterSN uint32 Serial number of the master module of

the system when the file was created

MeasurementType MeasurementConfigType Measurement type of the file

Page 47 of 75

Name string File Name

RecordingPath string File Path

RecordingTypeName string Recording Type Name based on its file

extension

TestNote string Test notes given by the user before the

test ran

Type RecordingType The type of recording based on its file

extension

Ex. ATFX, GPS, TS

User string The EDM account name when the file

was created.

UserAnnotation string Annotation added by the user

Version Version EDM version number when the file

was created.

SignalProperties
Property Type Description

BlockSize uint64 Number of time data points captured in

the signal

DeviceSN string The recording instrument serial

numbers

Duration string Amount of time covered by the signal

GeneratedTime DateTimeNano The time when the data is saved

Instruments string The recording instruments used in

measurement

IsVCSSignal bool Determines if VCS Signal from

Random, Sine, Shock, or TWR

MeasurementType MeasurementConfigType Measurement type of the signal

NvhType _NVHType The Noise, Vibration, and Harshness

Type of the signal

RecordingProperties RecordingProperty The recording property of the signal

SamplingRate string Number of data samples acquired per

second

SignalName string Signal Name

SignalType SignalType Signal type, time/frequency domain

Page 48 of 75

SoftwareVersion Version The software version of the recording

instrument when the data is saved

UnitX string Engineering Unit of X-axis

UnitY string Engineering Unit of Y-axis

UnitZ string Engineering Unit of Z-axis

NVHParameterSet Parameter Keys
The following property list deprived from the ISignal GetParameter<T> and GetParameterType

where the functions gets the the value and data type of each parameter key.

Parameter Key Type Description

controlPeak double Control peak (m/s2) when data saved

controlRMS double Current control RMS (m/s2) when data

saved

currentFrequency float Current frequency when data saved (Sine)

displacementPkPk double Displacement peak peak (m) when data

saved

DOF long Degree Of Freedom

drivePK double Current drive peak (voltage) when data

saved

fullLevelElapsed double Time since full level has elapsed in seconds

Ex. 636.2

remaining double Time remaining in test schedule in seconds

Ex. 299

sampleRate float Number of data samples acquired per second

Ex. 5120

spiderSN string The recording device serial number

Ex. “2590976”

spiderSystem string The recording instrument system

configuration

Ex. “SYS_2590976”

sweepCount long The test amount of times for sweep (Sine)

targetPeak double Target peak (m/s2) when data saved

targetRMS double Target RMS (m/s2) when data saved

testAbortLimit string The test abort limit profile

Page 49 of 75

testAlarmLimit string The test alarm limit profile

testLastRunTime string Last run time of the test

Ex. “03/07/2022 15:12:00”

testLastSavedTime string Last saved time of the test

Ex. “03/07/2022 15:23:19”

testName string The test name

Ex. “Random34”, “Shock1”

testNotchLimit string The test notch limit profile

testProfile string The test profile

testSchedule string The test event schedule

Ex.

testStatus string The test status

Ex. “Running”, “Stopped”

testType string The test type

Ex. “VCS_Random”

totalElapsed double Total elapsed time when data saved (time in

Random/Sine/TDR, pulses in Shock system)

velocityPk double Velocity peak (m/s) when data saved

AoEnvironment
Property Type Description

TimeZone string The local timezone of where the recording

instrument is

Examples: "UTC-07:00","UTC+05:45"

Timezones are additional information, they

do not change time values.

Function Return Type Description

GetLocalTime DateTime Get time in local format

Ex. 3/18/2022 6:46:32 PM

Page 50 of 75

GetUTCTime DateTime Get time in UTC format

Ex. 3/18/2022 2:46:32 PM

NVHMeasurement
Property Type Description

Altitude double The measurement of altitude according to the

device position

GPSEnabled bool Determines whether GPS location is on or

off

Latitude double The measurement of latitude according to the

device position

Longitude double The measurement of longitude according to

the device position

MeasurementBegin DateTime The begin time of the measurement when the

data is measured

MeasurementEnd DateTime The end time of the measurement when the

data is measured

NanoSecondElapsed uint32 The total elapsed time in nano seconds since

measurement begin. This parameter can be

used together with CreateTime to construct a

complete recording starting time that has a

format of:

yyyy/mm/dd/hh/ss/ms/us/ns

NVHEnvironment
Property Type Description

TimeZone string The local timezone of where the recording

instrument is

Examples: "UTC-07:00","UTC+05:45"

Timezones are additional information, they

do not change time values.

InstruSoftwareVersion string The software version of the recording

instrument when the data is saved

HardwareVersion string The hardware version of the recording

instrument when the data is saved

FirmwareVersion string The firmware version of the recording

instrument when the data is saved

Page 51 of 75

BitVersion string The bit version of the recording instrument

when the data is saved

ATFX API Coding Languages
The ATFX API have C# DLL files that are used with the C# language, but there are ways to use

the DLL files for other languages such as Python, LabVIEW and Matlab. The following section

will demostrate how to import the DLL files and how to call the functions and properties.

C# Demo Program
This is a demo program that demonstrates the API with a user interface that opens and displays

the data stored in a ATFX file for the user to see. Instructions to how to import the DLL files and

how to call the functions and properties are listed in the API C# Demo Examples.

Upon launching the demo program, click Open to select a ATFX file and the program will

display the stored data.

Page 52 of 75

Page 53 of 75

The below images show the various type of data stored in a ATFX file:

1) Record Information – Contains information regarding data format, the EDM

version, spider device and so on.

2) DateTimeNano Data – Contains infromation regarding the recording create time

and nanoseconds

Page 54 of 75

3) Signal Basic Information – Contains information regarding each signal properties,

such as engineering units, signal block size, type and so on.

4) Signal Advanced Information – Contains more in-depth data values and properties

of each signal.

Page 55 of 75

5) Signal Data – Contains the signal frame data.

6) Signal Parameters – Contains a list of signal properties with the properties’ names

and the properties’ values that users can call in custom programs.

Page 56 of 75

7) Signal Generate Time – Contains more advance information regarding a signal or

atfx file generated time.

8) Channel Table – Contains information regarding the signal test’s input channel

table.

9) Merge Information – Contains information about mutiple other atfx files if the file

is merged.

Page 57 of 75

Python Demo Script
Importing C# DLL files
In order to import C# DLL to be used in python, users will have to download a package called

Python.Net. There are other packages that can also import C# related libraries, such as

IronPython.

https://github.com/pythonnet/pythonnet

pip install pythonnet

After installing the pythonnet package, users can now import .NET Common Language Runtime,

add references to the ATFX API DLL files and import them to the python script. The following

code snippet below shows the importation of the ATFX API DLL files.

import clr

parentPath =

"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")

clr.AddReference(parentPath + "Common.dll")

clr.AddReference('System.Linq')

clr.AddReference('System.Collections')

from EDM.Recording import *

from EDM.RecordingInterface import *

from ASAM.ODS.NVH import *

from ASAM.ODS.ATFXML import *

from EDM.Utils import *

from Common import *

from Common.Spider import *

from System import *

from System.Diagnostics import *

from System.Reflection import *

from System.Text import *

from System.IO import *

Then users can call any functions and properties from the DLL files and use them accordingly.

https://github.com/pythonnet/pythonnet

Page 58 of 75

Python Script Code Example
An example below shows how to open a recording and show its recording properties, GPS info

and one of its signal properties.

#---Functions

def ShowContent(recording):

 props = recording.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public)

 for prop in props:

 content = prop.GetValue(recording, None)

 print(prop.Name, ": ", content)

def ShowGPSInfo(recording):

 if type(recording) is ODSNVHATFXMLRecording:

 nvhRec = recording

 nvhMeasurement = nvhRec.Measurement

 nvhEnvironment = nvhRec.Environment

 bGPS = nvhMeasurement.GPSEnabled

 if bGPS:

 print("GPS Enabled: ", bGPS)

 print("Longitude: ", nvhMeasurement.Longitude)

 print("Latitude: ", nvhMeasurement.Latitude)

 print("Altitude: ", nvhMeasurement.Altitude)

 print("Nanoseconds Elapsed: ", nvhMeasurement.NanoSecondElapsed)

 if not String.IsNullOrEmpty(nvhRec.Environment.TimeZone):

 print("Time Zone: ", nvhRec.Environment.TimeZone)

 print("Created Time (Local): ", nvhRec.RecordingProperty.CreateTime)

 print("Created Time (UTC): ",

nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime))

#---Main Code

Page 59 of 75

print("Running Main Code")

recordingManager = RecordingManager

recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"

recordingPathRegular = recordingPath + "SIG0020.atfx"

recordingPathTS = recordingPath + "{4499520}_REC_{20220419}(1).atfx"

recordingPathGPS = recordingPath + "REC0041.atfx"

#OpenRecording(string, out IRecording)

dummy data is required for the OpenRecording for it to correctly return all data

dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathTS,

None)

print("\nRecording Properties\n")

ShowContent(recording.RecordingProperty)

print("\nRecording GPS Properties\n")

ShowGPSInfo(recording)

print("\nSignal 1 Properties\n")

ShowContent(recording.Signals[0].Properties)

print("\nSignal 1 Properties GeneratedTime\n")

ShowContent(recording.Signals[0].Properties.GeneratedTime)

Example Print Statements

Running Main Code

Recording Properties

User : Unknown Owner

Instruments : GRS

TestNote : Untitled Test Note

Page 60 of 75

Name : {4499520}_REC_{20220419}(1)

RecordingPath : C:\Users\KevinCheng\Downloads\gps test

example\{4499520}_REC_{20220419}(1).atfx

Type : 0

RecordingTypeName : ASAM ODS Format - XML

Version : 10.0.8.34

CreateTime : 4/18/2022 6:47:10 PM

DeviceSNs : 4499520

MasterSN : 4499520

UserAnnotation : None

MeasurementType : 0

Recording GPS Properties

GPS Enabled: True

Longitude: 0.0

Latitude: 37.38046

Altitude: 12.42

Nanoseconds Elapsed: 629999338

Time Zone: UTC-05:00

Created Time (Local): 4/18/2022 6:47:10 PM

Created Time (UTC): 4/18/2022 10:47:10 PM

Signal 1 Properties

RecordingProperties : EDM.RecordingInterface.RecordingProperty

UserAnnotation : None

MeasurementType : 0

SignalType : 1

GeneratedTime : 4/18/2022 6:47:10 PM.629.999.338

SignalName : ch1

SamplingRate : 51.20 kHz

Page 61 of 75

BlockSize : 1793024

FrameCount : 1

Duration : 35.02 (s)

UnitX : S

UnitY : V

UnitZ : N/A

Instruments : GRS

DeviceSN : 4499520

SoftwareVersion : 10.0.8.34

NvhType : 0

AcquisitionCalculateMethod : 0

IsVCSSignal : False

IsLocalRecordSignal : False

DicTraceXMinMax :

System.Collections.Concurrent.ConcurrentDictionary`2[System.String,System.Collections.Ge

neric.KeyValuePair`2[System.Double,System.Double]]

DicTraceRMS :

System.Collections.Concurrent.ConcurrentDictionary`2[System.String,System.Double]

DicTraceInComposite :

System.Collections.Concurrent.ConcurrentDictionary`2[System.String,System.Boolean]

DicTraceAVD :

System.Collections.Concurrent.ConcurrentDictionary`2[System.String,System.Boolean]

Signal 1 Properties GeneratedTime

Year : 2022

Month : 4

Day : 18

Hour : 18

Minute : 47

Second : 10

Millisecond : 0

TimeOfDay : 18:47:10

IsNanoTime : True

Page 62 of 75

TotalNanosec : 67630629999338

The python script in the ATFX API package has more examples such as getting a list of signals

and displaying the frame data of 1 signal and getting a list of recordings and displaying each

recording properties.

LabVIEW Demo Script
In order to open and run the provided LabVIEW Demo Script, it is recommended to use

LabVIEW 2021 or 2021 SP1 version.

Importing C# DLL files
LabView comes with the combatility of importing C# dll files and articles on how to do so.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US

Once the .vi file block diagram is up, users can right click the empty space and locate

Connectivity -> .NET then any of the following nodes.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US

Page 63 of 75

If the user selects the Constructor Node and place into the diagram, another window will pop

up for selecting the .NET constructor reference. If the ATFX API dll files are not in the assembly

list, then users can click Browse and add in the dll files.

LabVIEW Block Diagram Example
The following shows the block diagram used to open the ATFX file and display its data from the

Examples_ReadATFX.vi file.

Page 64 of 75

Page 65 of 75

The following shows the GUI of the ATFX API LabView Reader and its usage.

Users open the file folder icon button to locate a atfx file, then click Open to extract and display

the recording data.

Page 66 of 75

Here is a display of the signal properties, frame data and generated time data.

Matlab Demo Script
In order to open and run the provided Matlab Demo Script, it is recommended to use Matlab

R2021b or later version.

Importing C# DLL files
In the recent versions of Matlab allow loading DLL files by using NET.addAssembly().

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXRead

er\Common.dll');

Page 67 of 75

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXRead

er\CI.ATFX.Reader.dll');

Matlab Script Code Example
Then users can call any functions and properties similar to C#.

An example below shows how to open a recording and display its recording properties and signal

frame data.

%create a atfx recording instance

rec = EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Downloads\gps

test example\REC0041.atfx');

%use item function to get signal instance

sig = Item(rec.Signals,0);

%display signal properties

disp(System.String.Format("Name:{0}",sig.Name));

disp(System.String.Format("X Unit:{0}",sig.Properties.xUnit));

disp(System.String.Format("Y Unit:{0}",sig.Properties.yUnit));

disp(System.String.Format("GPS Enable:{0}",rec.Measurement.GPSEnabled));

disp(System.String.Format("Longitude:{0}",rec.Measurement.Longitude));

disp(System.String.Format("Latitude:{0}",rec.Measurement.Latitude));

disp(System.String.Format("Altitude:{0}",rec.Measurement.Altitude));

disp(System.String.Format("Time zone:{0}",rec.Environment.TimeZone));

disp(System.String.Format("Created Time (Local):{0}",rec.RecordingProperty.CreateTime));

disp(System.String.Format("Created Time

(UTC):{0}",rec.Environment.GetUTCTime(rec.RecordingProperty.CreateTime)));

disp(System.String.Format("Nanoseconds

Elapsed:{0}",rec.Measurement.NanoSecondElapsed));

disp("display signal frame data");

%get signal frame

frame = sig.GetFrame(0);

%convert .Net double[][] array to matlab cell

matFrame = cell(frame);

Page 68 of 75

%Long format, showing more decimal places

format long

%display the cell(frame) content

%celldisp(matFrame);

%convert back to mat array

xVals = cell2mat(matFrame(1));

yValues = cell2mat(matFrame(2));

%plot the signal

plot(xVals,yValues,'r');

xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");

ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");

title("Plot of the "+string(sig.Name));

legend(string(sig.Name))

Example Output

Post Analysis Software Integrates ATFX API

Page 69 of 75

The Feature that Utilizes ATFX Reader API in PA Software

The following screenshots of the Post Analysis Software shows a feature that integrates ATFX

Reader API, which reads and shows all the information in atfx files that are created by Crystal

Instruments products. The ATFX Reader API not only can be integrated in software products of

Crystal Instruments, but also can be licensed to users to customize their software.

Page 70 of 75

Page 71 of 75

END USER LICENSE AGREEMENT FOR CRYSTAL

INSTRUMENTS SOFTWARE

 --- Updated May 11, 2022

IMPORTANT – READ CAREFULLY. This End User License Agreement (“the Agreement”) is a legally binding agreement between you (“the
Licensee”) and Crystal Instruments Corporation (“Crystal Instruments”) for the Crystal Instruments EDM (Engineering Data Management)

software, PA (Post Analyzer), EDM Cloud, CI Store, EDC (Embedded Device Control), various API, or the embedded software installed in

CoCo, Spider and other series hardware, which includes software components and tools and written documentation (“Software”) that
accompanies this Agreement. This Agreement contains WARRANTY AND LIABILITY DISCLAIMERS.

1. SCOPE OF THE LICENSE RIGHT

1.1 By installing, copying, or using the Software, the Licensee agrees to be bound by the terms of this Agreement.

1.2 Subject to the terms and conditions of this Agreement, Crystal Instruments hereby grants to the Licensee a non-exclusive, non-transferable,

right to use the Software, as ordered by the Licensee, solely for the Licensee’s own use and solely with the Crystal Instruments hardware for
which it is intended.

1.3. The Licensee shall not be entitled to copy or distribute the Software or parts thereof; publish the Software for others to copy; sell, rent, lease,

or lend the Software; or transfer or assign the Software or the license rights to the Software to a third party in any other way whatsoever.
1.4 The Licensee shall, however, be entitled to make back-up copies of the Software to the extent that applicable law expressly permits. The use

of the back-up copy shall be subject to the terms of this Agreement.

1.5 The Licensee shall ensure that the Software is stored in such a manner that third parties do not have access to it and that a third party does not
come into possession of the Software in any other way. The Licensee shall make all employees who have access to the Software fully aware of

this obligation.

2. CHANGES TO THE SOFTWARE

2.1 The Licensee shall not be entitled to make any changes to the Software, or reverse engineer, decompile, or disassemble the Software, except
and only to the extent that applicable law expressly permits.

2.2 In the event of the Licensee or a third party interfering with or making any changes to the Software, Crystal Instruments may terminate the

Agreement with immediate effect, and Crystal Instruments hereby disclaims any liability for the consequences of such interference or change.

3. INTELLECTUAL PROPERTY RIGHTS

3.1 The Software is protected by copyright law and other intellectual property laws. Crystal Instruments or its suppliers own all copyright and any
other intellectual property rights in the Software. The Licensee shall respect Crystal Instruments’ and its suppliers’ rights and the Licensee shall

be fully liable in the event of any violation of these rights, including unauthorized passing on of the Software or any part of it to a third party.

3.2 The Licensee shall not be entitled to break, change or delete any security codes or license keys, nor shall the Licensee be entitled to change or
remove statements in the Software or on the media on which the Software is delivered regarding copyrights, trademarks, or any other proprietary

notices.

3.3 Information and data supplied by Crystal Instruments with the Software, such as, but not limited to, user manuals and documentation, are
proprietary to Crystal Instruments or its suppliers. Such information is furnished solely to assist the Licensee in the installation, operation and use

of the Software and the Licensee agrees not to reproduce or copy such information, except as is reasonably necessary for proper use of the

Software.

4. TRADEMARKS

4.1 The Licensee acknowledges Crystal Instruments’ and its suppliers’ sole ownership of any trademarks including service marks, logos and
other proprietary marks submitted with the Software, and all associated goodwill. This Agreement does not grant the Licensee any rights to the

trademarks of Crystal Instruments and its suppliers.

4.2 The Licensee agrees not to use the trademarks in any manner that will diminish or otherwise damage Crystal Instruments’ or its suppliers’
goodwill in the trademarks. The Licensee agrees not to adopt, use, or register any corporate name, trade name, trademark, domain name, service

mark, certification mark, or other designation similar to, or containing in whole or in part, the trademarks of Crystal Instruments.

5. CLOUD SERVICE PROVIDED BY CRYSTAL INSTRUMENTS

5.1 Data Location When cloud service is enabled, Crystal Instruments Corporation may process and store the customer data anywhere Crystal

Instruments Corporation or its agents maintain facilities and services.
5.1.1 Facilities All facilities used to store and process an application and customer data will adhere to reasonable security standards no less

protective than the security standards at facilities where Crystal Instruments Corporation processes and stores its own information of a similar type.

5.2 Data Processing and Security

5.2.1 Scope of Processing By entering into this agreement, customer instructs Crystal Instruments Corporation to process customer personal data

and other data related to its services only in accordance with applicable law: (a) to provide the cloud services; (b) as further specified by customer
via customer’s use of the cloud services (including the admin console and other functionality of the services); (c) as documented in the form of this

agreement, including these terms; and (d) as further documented in any other written instructions given by customer and acknowledged by Crystal

Instruments Corporation as constituting instructions for purposes of these Terms.
5.2.2 Data Security Crystal Instruments Corporation will use third party technical measures to protect customer data against accidental or unlawful

destruction, loss, alteration, unauthorized disclosure or access. Crystal Instruments Corporation is not responsible or liable for the deletion of or

failure to store any customer data and other communications maintained or transmitted through use of the services. In addition, Crystal Instruments
is not responsible or liable for unauthorized access of the customer data. Customer is solely responsible for securing and backing up data. Crystal

Page 72 of 75

Instruments Corporation does not warrant that the operation of the software or the services will be error-free or uninterrupted. Neither the software
nor the services are designed, manufactured, or intended for high risk activities.

5.2.3 Data Deletion

Deletion by Customer: Crystal Instruments Corporation will enable Customer to delete Customer Data during the Term in a manner consistent with
the functionality of the Services.

Deletion on Termination. On expiry of the Term, Crystal Instruments would delete all Customer Data. Customer acknowledges and agrees that

Customer will be responsible for exporting, before the Term expires, any Customer Data it wishes to retain afterwards.

5.3 Accounts Customer must have an account to use the services, and is responsible for the information it provides to create the account, the

security of passwords for the account, and for any use of its account. If customer becomes aware of any unauthorized use of its password or its
account, Customer will notify Crystal Instruments Corporation as promptly as possible. Crystal Instruments Corporation has no obligation to

provide customer multiple accounts.

5.4 Payment Terms for Cloud Service

5.4.1 Free Quota Certain services are provided to customer without charge up to the fee threshold, as applicable.

5.4.2 Online Billing At the end of the applicable fee accrual period, Crystal Instruments Corporation will issue an electronic bill to customer for
all charges accrued above the fee threshold based on (i) Customer’s use of the Services during the previous fee accrual period; (ii) any additional

units added; (iii) any committed purchases selected; and/or (iv) any package purchases selected. For use above the fee threshold, customer will be

responsible for all fees up to the amount set in the account and will pay all fees in the currency set forth in the invoice. If customer elects to pay by

credit card, debit card, or other non-invoiced form of payment, Crystal Instruments Corporation will charge (and customer will pay) all fees

immediately at the end of the fee accrual period. If customer elects to pay by invoice (and Crystal Instruments Corporation agrees), all fees are due

as set forth in the invoice. Customer’s obligation to pay all fees is non-cancellable. Crystal Instruments Corporation's measurement of Customer’s
use of the services is final. Crystal Instruments Corporation has no obligation to provide multiple bills. Payments made via wire transfer must

include the bank information provided by Crystal Instruments Corporation.

5.4.3 Payment Information Crystal Instruments Corporation will not store any payment related information on its facilities. All payment
information, including recurring payments are stored at a third party facility. Crystal Instruments will not be responsible or liable for unauthorised

access to this information.
5.4.4 Taxes for Cloud Services

(a) Customer is responsible for any taxes, and customer will pay Crystal Instruments Corporation for the services without any reduction for taxes.

If Crystal Instruments Corporation is obligated to collect or pay taxes, the taxes will be invoiced to customer, unless customer provides Crystal
Instruments Corporation with a timely and valid tax exemption certificate authorized by the appropriate taxing authority. In some states the sales

tax is due on the total purchase price at the time of sale and must be invoiced and collected at the time of the sale. If customer is required by law to

withhold any taxes from its payments to Crystal Instruments Corporation, customer must provide Crystal Instruments Corporation with an official
tax receipt or other appropriate documentation to support such withholding. If under the applicable tax legislation the services are subject to local

VAT and the customer is required to make a withholding of local VAT from amounts payable to Crystal Instruments Corporation, the value of

services calculated in accordance with the above procedure will be increased (grossed up) by the customer for the respective amount of local VAT
and the grossed up amount will be regarded as a VAT inclusive price. Local VAT amount withheld from the VAT-inclusive price will be remitted

to the applicable local tax entity by the customer and customer will ensure that Crystal Instruments Corporation will receives payment for its

services for the net amount as would otherwise be due (the VAT inclusive price less the local VAT withheld and remitted to applicable tax authority).
(b) If required under applicable law, customer will provide Crystal Instruments Corporation with applicable tax identification information that

Crystal Instruments Corporation may require to ensure its compliance with applicable tax regulations and authorities in applicable jurisdictions.

Customer will be liable to pay (or reimburse Crystal Instruments Corporation for any taxes, interest, penalties or fines arising out of any mis-
declaration by the Customer.

5.4.5 Invoice Disputes and Refunds Any invoice disputes must be submitted prior to the payment due date. If the parties determine that certain

billing inaccuracies are attributable to Crystal Instruments Corporation, Crystal Instruments Corporation will not issue a corrected invoice, but will
instead issue a credit memo specifying the incorrect amount in the affected invoice. If the disputed invoice has not yet been paid, Crystal Instruments

Corporation will apply the credit memo amount to the disputed invoice and Customer will be responsible for paying the resulting net balance due

on that invoice. To the fullest extent permitted by law, customer waives all claims relating to fees unless claimed within thirty days after charged
(this does not affect any customer rights with its credit card issuer). Refunds (if any) are at the discretion of Crystal Instruments Corporation and

will only be in the form of credit for the services. Nothing in this Agreement obligates Crystal Instruments Corporation to extend credit to any

party.
5.4.6 Delinquent Payments; Suspension Late payments may bear interest at the rate of 1.5% per month (or the highest rate permitted by law, if

less) from the payment due date until paid in full. customer will be responsible for all reasonable expenses (including attorneys’ fees) incurred by

Crystal Instruments Corporation in collecting such delinquent amounts. If customer is late on payment for the services, Crystal Instruments
Corporation may suspend the services or terminate the account(s) and services(s) for breach

5.5 Account Term & Termination

5.5.1 Account Term The term of the account will begin on the effective date and continue until the agreement is terminated.

5.5.2 Termination for Breach Crystal Instruments Corporation may terminate account for breach if: (i) the account(s) is in material breach of the

agreement; or (ii) the customer ceases its business operations or becomes subject to insolvency proceedings and the proceedings are not dismissed
within ninety days.

5.5.3 Termination for Convenience Customer may stop using the cloud service at any time. Customer may terminate the account(s) and services

for its convenience at any time on prior written notice and upon termination, must cease use of the applicable services.
Crystal Instruments Corporation may terminate the account(s) or services for its convenience at any time without liability to Customer.

5.5.4 Effect of Termination If the account(s) or services(s) are terminated, then: (i) the rights granted by one party to the other will immediately

cease; (ii) all fees owed by customer to Crystal Instruments Corporation are immediately due upon receipt of the final electronic bill; (iii) customer
will delete the software, any application and any data; and (iv) upon request, each party will use commercially reasonable efforts to return or destroy

all confidential information of the other party.

5.6 Customer Obligations for Cloud Services

Page 73 of 75

5.6.1 Compliance Customer is solely responsible for account information and data and for making sure its usage of services is consistent with the
terms of the services. Crystal Instruments Corporation reserves the right to review the data for compliance.

5.6.2 Restrictions

Customer will not, and will not allow third parties under its control to: (a) copy, modify, create a derivative work of, reverse engineer, decompile,
translate, disassemble, or otherwise attempt to extract any or all of the source code of the services (except to the extent such restriction is

expressly prohibited by applicable law); (b) sublicense, resell, or distribute any or all of the services; or (c) create multiple account(s) to simulate

or act as a single account or otherwise access the services in a manner intended to avoid incurring fees or exceed usage limits or quotas;
5.6.3 Third Party Components

Third party components (which may include open source software) of the services may be subject to separate license agreements. To the limited

extent a third party license expressly supersedes this agreement, that third party license governs customer’s use of that third party component.

6. EXPORT RESTRICTIONS

The Software may be subject to the export control laws and regulations of the United States. The Licensee must comply with all domestic and
international export control laws and regulations that apply to the Software. These laws include restrictions on destinations, end users, and end

use.

7. THE LICENSEE’S CHOICE OF SOFTWARE

The Software is a standard product, which is delivered by Crystal Instruments with the functions that are specified in the accompanying

documentation. Any assistance provided by Crystal Instruments in connection with the choice of the Software will be based on the Licensee’s

information about the Licensee’s business provided to Crystal Instruments. The Licensee shall be responsible for both the completeness and the

accuracy of such information. Crystal Instruments makes no representations or warranties as to whether the Software meets the functionality or

other requirements of the Licensee and assumes no liability therefor.

8. WARRANTIES AND DISCLAIMERS

8.1 The Licensee shall be under obligation to examine and test the Software immediately after installation of the Software.
8.2 On condition that Crystal Instruments is fully paid for the Software that Customer purchased, Crystal Instruments warrants that the Software

will be free of material defects for a period of 12 months after the delivery of the Software to Licensee (the “Warranty Period”). A defect in the
Software shall be regarded as material if it has a material adverse effect on the functionality of the Software as a whole or if it prevents operation

of the Software. Minor bugs or functions that can be improved are not viewed as a defect.

8.3 If the Licensee documents that there is a material defect in the Software, and notifies Crystal Instruments of the defect within the Warranty
Period, Crystal Instruments will, at its discretion, without charge: (a) deliver a new version of the Software without the material defect, or (b)

remedy the defect, or (c) provide Licensee with instructions for procedures or methods (workarounds) which result in the defect not having a

significant effect on the Licensee’s use of the Software. If Crystal Instruments fails to do any of the above within 30 days (or such longer period
of time as is reasonably necessary given the nature of the defect), the Licensee may terminate this Agreement upon notice to Crystal Instruments,

in which event Crystal Instruments will refund to Licensee a pro-rated portion of the license fee paid by Licensee for the Software (based on the

portion of the Warranty Period remaining as of the date Licensee notified Crystal Instruments of the defect), provided Licensee returns to Crystal
Instruments all the Licensee's versions and copies of the Software, and all manuals and accompanying documentation. This paragraph states the

sole obligations of Crystal Instruments, and the sole remedy of Licensee, for defects in the Software, and the parties shall not be entitled to bring

further claims against each other.
8.4 EXCEPT FOR THE EXPRESS WARRANTY IN SECTION 7.2 ABOVE, THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT

ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF ACCURACY,

COMPATIBILITY WITH OTHER SOFTWARE OR HARDWARE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. CRYSTAL INSTRUMENTS DOES NOT WARRANT THAT THE OPERATION OF THE SOFTWARE WILL BE

WITHOUT INTERRUPTIONS, DEFECT-FREE, OR ERROR-FREE OR THAT PRODUCT DEFECTS OR ERRORS CAN OR WILL BE

REMEDIED OR CORRECTED.

9. CONSENT TO USE OF DATA

Licensee agrees that Crystal Instruments and its affiliates may, through Internet connections established by the Software or otherwise, collect
technical information related to Licensee’s use of the Software, including but not limited to the serial numbers of Crystal Instruments hardware

with which the Software is used, email addresses of users, and technical information relating to Licensee’s computers, systems, application

software, and peripherals. Licensee agrees that Crystal Instruments may use such information to facilitate the provision of Software updates and
product support, to improve Crystal Instruments’ products and/or services, or to provide products or services to Licensee. Crystal Instruments

will not, however, publish or disclose such information in a form that may personally identify Licensee.

10. LIABILITY AND LIMITATION OF LIABILITY

10.1 CRYSTAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES (INCLUDING BUT NOT LIMITED TO LOSS OF EXPECTED PROFIT, LOSS OF DATA OR THEIR RECOVERY, LOSS OF
GOODWILL OR ANY OTHER SIMILAR DAMAGES), UNDER ANY LEGAL THEORY, IN CONNECTION WITH THE USE OF THE

SOFTWARE OR THE INABILITY TO USE THE SOFTWARE, REGARDLESS OF WHETHER CRYSTAL INSTRUMENTS HAS BEEN

INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.
10.2 IN NO EVENT SHALL THE TOTAL LIABILITY OF CRYSTAL INSTRUMENTS TO LICENSEE ARISING OUT OF OR RELATING

TO THE SOFTWARE EXCEED THE LICENSE FEE PAID BY LICENSEE FOR THE SOFTWARE.

10.3 Crystal Instruments shall not be liable for any errors, defects, or deficiencies which are not related to the Software, nor shall Crystal
Instruments be liable for the integration or interaction between the Software and the Licensee’s existing hardware and software. Crystal

Instruments shall not be liable for the effect of any upgrades on existing hardware, software, or adjustments for the Software regardless of

whether such adjustments were developed by Crystal Instruments.
10.4 Crystal Instruments shall have no liability of any nature relating to software or content of third parties that may be included in the Software.

10.5 The limitations in this Section 9 will apply even in the event of failure of essential purpose of any remedy.

11. GOVERNMENT USERS

Page 74 of 75

The Software and related documentation are "Commercial Items", as that term is defined at 48 C.F.R. §2.101, consisting of "Commercial
Computer Software" and "Commercial Computer Software Documentation", as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R.

§227.7202, as applicable. The Software and documentation are being licensed to U.S. Government end users (a) only as Commercial Items and

(b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.

12. TERM AND TERMINATION

12.1 The term of this Agreement, and Licensee’s license rights, which may be referred to the activation period of license, shall be as indicated in
Licensee’s order. Such term may be perpetual, or may be of limited duration in the event the Software is provided to Licensee for demonstration,

evaluation or other similar purposes. Licensee acknowledges that if Licensee’s rights are of limited duration, the license key provided to

Licensee to enable use of the Software may cease to allow use of the Software after expiration of such activation period.
12.2 Upon termination of the Agreement for any reason, the Licensee is obliged to immediately return or destroy the Software and all copies

thereof as directed by Crystal Instruments and, if requested by Crystal Instruments, to certify in writing as to the destruction or return of the

Software and all copies thereof.

13. DEFAULTS

If the Licensee is in default of the Agreement, the Licensee’s rights under the Agreement shall terminate with immediate effect, and the Licensee
shall be under an obligation to return the Software, including any back-up copies and accompanying documentation, without a right to repayment.

In addition, Crystal Instruments shall be entitled to damages for any loss, which Crystal Instruments may suffer, in accordance with the general

rules of United States law, including all losses, damages, costs, expenses, etc., without any limitations, incurred or suffered by Crystal

Instruments as a result of claims from any third party in relation to the Licensee’s breach of the Agreement.

14. UPDATES AND RENEW

14.1 For one year after the delivery of the Software, Crystal Instruments will provide Licensee, free of charge, with any updates to the Software

that Crystal Instruments makes generally available to its customers. Licensee may renew such right to receive updates, for additional periods of

one year each, by paying Crystal Instruments the support renewal fee in effect at the time of such renewal. Licensee acknowledges that if
Licensee elects not to renew the right to receive updates, the license key provided to Licensee to enable use of the Software may thereafter cease

to allow installation and use of updates. Notwithstanding the above, Crystal Instruments may charge an additional license fee for any optional
upgrades Crystal Instruments may release, which include significant new functionality and which Crystal Instruments does not make available

without charge to its customers generally.

14.2 Crystal Instruments and the Licensee can agree on the other term about the period of software update after the sales.
14.3 Crystal Instruments has the rights to control the period of software update through various technical means including online activation or

certain algorithm embedded in the license keys. The Licensee has no rights to reverse engineer, decompile, or disassemble the algorithm.

15. CHOICE OF LAW AND COURT OF JURISDICTION

15.1 The Agreement shall be governed by the laws of the State of California, and applicable United States federal law.
15.2 Any suit or proceeding arising out of this Agreement shall be brought only in a court located in Santa Clara County, California, and the

parties submit to the exclusive jurisdiction and venue of such courts; provided, however, that Crystal Instruments may seek injunctive relief for

any breach of this Agreement by Licensee in any court that would otherwise have jurisdiction over Licensee.

16. GENERAL PROVISIONS

16.1 Failure by Crystal Instruments to exercise or enforce any rights hereunder shall not be deemed to be a waiver of any such rights nor affect
the exercise or enforcement thereof at any time or times thereafter.

16.2 If any provision or part of this Agreement is or is held by any court of competent jurisdiction to be unenforceable or invalid, such

unenforceability or invalidity shall not affect the enforceability of any other provision.
16.3 This Agreement constitutes the entire agreement between the parties with respect to its subject matter and supersedes all prior or

contemporaneous understandings regarding that subject matter. No amendment to or modification of this Agreement will be binding unless in

writing and signed by an authorized officer of Crystal Instruments.
16.4 Licensee may not transfer or assign Licensee’s rights under this Agreement to any third party without the prior written consent of Crystal

Instruments, including by operation of law.

17. THIRD PARTY SOFTWARE LICENSE/NOTICES

Crystal Instruments Software uses a number of software products from 3rd parties that are under one of the following licenses, Apache License,
GPL License, LGPL License and MIT License. Please contact Crystal Instruments to obtain the most updated list of 3rd party software that are

incorporated in the Software.

License Type Definition

*Apache License

Apache License is a free software license authored by the Apache Software Foundation (ASF). The Apache License requires preservation of

the copyright notice and disclaimer. Like any free software license, the Apache License allows the user of the software the freedom to use the

software for any purpose, to distribute it, to modify it, and to distribute modified versions of the software, under the terms of the license, without
concern for royalties.

The 2.0 version of the Apache License was approved by the ASF in 2004. The goals of this license revision have been to reduce the number of

frequently asked questions, to allow the license to be reusable without modification by any project (including non-ASF projects), to allow the
license to be included by reference instead of listed in every file, to clarify the license on submission of contributions, to require a patent license

on contributions that necessarily infringe the contributor's own patents, and to move comments regarding Apache and other inherited attribution

notices to a location outside the license terms

Page 75 of 75

*GPL License

The GNU General Public License (GNU GPL or GPL) is the most widely used free software license, which guarantees end users (individuals,

organizations, companies) the freedoms to use, study, share (copy), and modify the software. Software that ensures that these rights are retained is

called free software. The license was originally written by Richard Stallman of the Free Software Foundation (FSF) for the GNU project.

*LGPL License

 LGPL (formerly the GNU Library General Public License) is a free software license published by the Free Software Foundation (FSF). The
LGPL allows developers and companies to use and integrate LGPL software into their own (even proprietary) software without being required

(by the terms of a strong copyleft) to release the source code of their own software-parts.

*MIT License

The MIT License is a permissive free software license originating at the Massachusetts Institute of Technology (MIT)。 The MIT License is

compatible with many copyleft licenses, such as the GNU General Public License (GNU GPL). Any software licensed under the terms of the

MIT License can be integrated with software licensed under the terms of the GNU GPL.

--- Updated May 11, 2022

