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Basic Theory of FFT 
Frequency Analysis
Introduction
DSA, often referred to Dynamic 
Signal Analysis or Dynamic Signal 
Analyzer depending on the context, 
is an application area of digital signal 
processing technology. Compared 
to general data acquisition and time 
domain analysis, DSA instruments 
and math tools focus more on the 
dynamic aspect of the signals such as 
frequency response, dynamic range, 
total harmonic distortion, phase match, 
amplitude flatness, etc. In recent years, 
time domain data acquisition devices 
and DSA instruments have gradually 
converged together. Progressively 
more time domain instruments, such as 
oscilloscopes, can perform frequency 
analysis and a growing number of 
dynamic signal analyzers can obtain 
long duration data recordings.

DSA uses various digital signal 
processing technologies. Among 
them, the most fundamental and 
popular technology is based on the Fast 
Fourier Transform (FFT). The FFT 
transforms the time domain signals 
into the frequency domain. Users need 
to understand the fundamental issues 
and computations involved to perform 
FFT-based measurements. This chapter 
describes some of the basic signal 
analysis computations, discusses anti-
aliasing and acquisition front-end for 
FFT-based signal analysis, explains 
how to use windowing functions 
correctly, explains some spectrum 
computations, and demonstrates how 
to use FFT-based functions for some 
typical measurements.

This chapter will use standard 
notations for different signals. Each 
type of signal will be represented by 
one specific letter. For example, “G” 
represents a one-side power spectrum, 
while “H” represents a transfer 
function.

The following table defines the 

symbols used in this chapter:

γyx

Coherence function between 
input signal x and output 
signal y

Gxx

Auto-spectral function (one-
sided) of signal x

Gyx

Cross-spectral function (one-
sided) between input signal x 
and output signal y

Hyx

Transfer function between 
input signal x and output 
signal y

k Index of a discrete sample

Rxx

Auto-correlation function of 
signal x

Ryx

Cross-correlation function 
between input signal x and 
output signal y

Sx

Linear spectral function of 
signal x

Sxx

Instantaneous auto-spectral 
function (one-sided) of 
signal x

Syx

Instantaneous cross-spectral 
function (one-sided) between 
input signal x and output 
signal y

t Time variable

x(t) Time history record

X(f) Fourier Transform of time 
history record

Fourier Transform
Digital signal processing technology 
includes FFT based frequency 
analysis, digital filters, and many 
other topics. This chapter introduces 
the FFT based frequency analysis 
methods that are widely used in all 
dynamic signal analyzers. Crystal 
Instrument’s analyzers fully utilize 
the FFT frequency analysis methods 
and various real time digital filters to 
analyze the measurement signals.

The Fourier Transform is a transform 
used to convert quantities from the 
time domain to the frequency domain 
and vice versa, usually derived from 

the Fourier integral of a periodic 
function when the period grows 
without limit, often expressed as a 
Fourier transform pair. In the classical 
sense, a Fourier transform takes the 
form of
  

Where:

x(t) continuous time waveform
f frequency variable
j complex number
X(f) Fourier transform of x(t)

Mathematically the Fourier Transform 
is defined for all frequencies from 
negative to positive infinity.  However, 
the spectrum is usually symmetric, 
and it is common to only consider 
the single-sided spectrum which is 
the spectrum from zero to positive 
infinity.  For discrete sampled signals, 
this can be expressed as

Where:

x(n) samples of time waveform
n running sample index

N total number of samples or 
“block size”

k
finite analysis frequency, 
corresponding to “FFT bin 
centers”

X(k) discrete Fourier transform of 
x(k)

  
In most DSA products, a Radix-2 DIF 
FFT algorithm is used, which requires 
that the total number of samples must 
be a power of 2 (total number of 
samples in FFT = 2m, where m is an 
integer).

 X(f)= ∫ x(t)e-j2πft dt
∞

-∞
 

 

𝑋𝑋(𝑘𝑘) =  ∑ 𝑥𝑥(𝑛𝑛)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁
𝑁𝑁−1

𝜋𝜋=0
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Sampling Rate Selection
The most important parameter to 
consider before performing an FFT 
is the sampling rate. This dictates the 
highest frequency component that 
can be resolved. Before discussing 
sampling rate, it is important to 
understand the Nyquist-Shannon 
sampling theorem. It states that if a 
system uniformly samples an analog 
signal at a rate that exceeds the signal’s 
highest frequency component by a 
factor of at least 2 then the original 
analog signal can be recovered exactly 
from the discrete samples. 

Nyquist Frequency = 2∙Maximum 
Signal Frequency

This can be better understood with an 
illustration. Consider a 2 Hz sine tone.

Now suppose we sample this 2 Hz 
sine tone with a sampling rate of 6 Hz. 
Then in a period of 10 seconds, we will 
have acquired 60 discrete samples. 
 
Since the sampling rate is greater 
than twice the frequency of the sine 
tone, we can reconstruct the analog 
signal via interpolation using the Sinc 
function.

where x[n]  are the sampled values of 
x(t)  and T is the sampling period 

 

Figure 1. 2 Hz sine function.
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Figure 2. Samples of a 2 Hz sine tone acquired at 6 samples per second.
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𝑥𝑥(𝑡𝑡) =  ∑ 𝑥𝑥[𝑛𝑛] ∙ 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠 (𝑡𝑡 − 𝑛𝑛𝑛𝑛
𝑛𝑛 )

∞

𝑛𝑛=−∞
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The reconstructed signal is almost 
identical to the original signal. Now 
suppose we sampled the 2 Hz sine tone 
with a sampling rate of 2.5 Hz instead 
of 6 Hz. In a period of 10 seconds, we 
will have acquired 25 samples. 
 
The original 2 Hz sine wave cannot 
be reconstructed with the 25 samples 
from Figure 4. If an attempt is made, 
the resulting analog waveform will be 
an aliased signal. 

Figure 3. Continuous 2 Hz sine tone overlaid with a properly reconstructed 2 Hz sine tone.
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Figure 4. Samples of a 2 Hz sine tone acquired at 2.5 samples per second.
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From the plot in Figure 5, we can 
observe the reconstructed signal has 
a lower frequency than the original 
signal. This phenomenon is attributed 
to aliasing in the reconstructed signal, 
stemming from the fact that the 
samples utilized for its construction 
were acquired at a rate lower than the 
Nyquist frequency.

Anti-Aliasing Filter
It is now established that a sampling 
rate exceeding the Nyquist frequency 
by a factor of 2 is essential for proper 
analysis. However, in many cases, the 
bandwidth of a given signal remains 
elusive and consequently the Nyquist 
frequency is unknown. To address 
this challenge, a signal should first be 
passed through an anti-aliasing filter 
before being sampled as illustrated 
in Figure 6. This filter serves to limit 
the upper threshold of the signal 
frequency, effectively preventing 
aliasing. 

Crystal Instruments’ DAQs are 
equipped with anti-aliasing filters. 
The cut-off frequency of the filters 
varies based on the sampling rate 
of the system. Ideally, the cutoff 
frequency should be exactly half 
the sampling rate according to the 
Nyquist-Shannon sampling theorem. 
However, this would require a ‘brick 
wall’ filter, where all frequency 
components equal to or less than the 
Nyquist frequency are passed through 
without any attenuation and where 
all frequency components above the 
Nyquist frequency are attenuated 
completely. A real anti-aliasing filter 
will have a frequency response like 
the plot depicted in Figure 7.
 
The frequency response curve from 
the plot above can be separated into 3 
sections:

 ● Passband – frequency components 
in the passband are unattenuated by 
the filter.

 ● Transition Region – frequency 

components are attenuated by at 
least 3 dB.

 ● Stopband – frequency components 
are attenuated completely.

Crystal Instruments incorporates anti-
aliasing filters with a transition region 
initiating at 0.45 times the sampling 
rate, and the cut-off frequency is 
adjusted accordingly. 

Cut-off frequency = 0.45∙Samping 
Rate

This cut-off frequency assures 
users that the acquired data is 
uncontaminated by aliased signals. 
By integrating the anti-aliasing filter 
alongside an appropriately chosen 
sampling rate, it becomes possible to 
conduct an accurate spectral analysis.
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Figure 5. Continuous 2 Hz sine tone overlaid with an aliased sine tone.
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Figure 6. Block diagram depicting the anti-aliasing filter and the ADC.
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Block Size
As mentioned earlier, the block size 
must conform to a power of 2 as 
required by the Fast Fourier Transform 
algorithm. In Crystal Instruments 
devices and EDM software, the block 
sizes are listed as two numbers:

Block Size: Time Domain Points / 
Spectral Lines

The Time Domain Points refer to the 
number of samples to be acquired prior 
to initiating any signal processing 
procedures. An alternative perspective 
is to link the time domain points with 
the duration of the captured data 
according to the following formula:

Duration =  (Time Domain Points)/
(Sampling Rate)

For example, with a sampling rate 
of 102.4 kHz and a block size of 
1024/450, the duration of capture is 
calculated as follows:

1024/102400 Hz = 0.01 seconds

This means that each block consists 
of 0.01 seconds of data captured in 
the time domain. Thus, every second 
of an incoming time steam will be 
partitioned into 100 blocks.

Spectral Lines refer to the number of 
frequency domain points produced 
after an FFT is applied to the set of time 
domain points. The FFT algorithm 
takes an input of N sample points and 
produces a frequency spectrum of N 
points. The spectrum produced ranges 
from the negative Nyquist frequency 
to the positive Nyquist frequency. The 
values associated with the negative 
frequencies are mirrored duplicates 
of the magnitudes associated with the 
positive frequencies, as illustrated in 
Figure 8.
 
Since the FFT spectrum is mirrored 
about 0 Hz, the magnitudes associated 
with the negative frequencies may be 

discarded and in theory the number of 
spectral lines can be exactly half the 
number of time domain points, N/2. 
However, as previously mentioned, 
the cut-off frequency is 0.45∙Samping 
Rate and so some of the spectral lines 
that would have appeared near the end 
of the Nyquist frequency are omitted.  
The number of spectral lines and time 
domain points are associated as:

Spectral Lines ~0.44∙Time Domain 
Points

Consider a spectrum produced using 
data sampled at 1 kHz and a block 
size of 1024/450. Then 512 spectral 
points could be used to represent the 
frequency response up to the Nyquist 
rate of 500 Hz. Instead of 512 spectral 
points, 450 will be used to represent 
the frequency range up to 439 Hz. 

Now, spectral analysis is performed 
on a block-by-block basis, meaning 
each block of data is independently 
transferred to the frequency domain via 
the FFT algorithm. Furthermore, the 
frequency resolution of the spectrum 
produced is entirely determined by 
the sampling rate and block size as 
specified by the following equation:

∆f = (Frequency Range)/(Spectral 
Lines)

Building upon the preceding example, 
the frequency resolution of the 
spectrums produced with a sampling 
rate of 102.4 kHz and a block size of 
1024/450 is calculated as follows:

∆f = 46080 Hz/450 = 102.4 Hz

This implies that within the frequency 
range spanning 0 Hz – 46080 Hz, 450 
spectral lines will emerge, starting at 
102.4 Hz and ending at 46080 Hz, 
each spaced uniformly by 102.4 Hz. 

Frequency resolution becomes 
critical when analyzing signals that 
may encompass dominant frequency 
components positioned in close 
proximity to each other. 

Double-sided FFT
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Suppose an incoming signal sampled 
at 5120 Hz is comprised of a 
superposition of two sine tones, one 
with a frequency of 2 Hz and the other 
with a frequency of 3 Hz. (Figure 9) 

The two tones are spaced 1 Hz apart 
and so to determine the magnitude of 
contribution from each tone on the 
complete signal requires careful block 
size selection. Suppose a block size of 
102400/51200 is used to produce the 
AutoPower Spectra. With a sampling 
rate of 5120 Hz and 51200 spectral 
lines, the frequency resolution is as 
follows:

∆f = 2560 Hz/51200 = 0.05 Hz

Similarly, with a block size of 
2048/1024 the resulting frequency 
resolution is:

∆f = 2560 Hz/1024= 2.5 Hz

Figure 10 displays both APS 
spectrums: a blue spectrum with a 
block size of 102400 and a green 
spectrum with a block size of 2048.  
However, only the blue spectrum 
provides a high enough frequency 
resolution to resolve the dominant 2 
Hz and 3 Hz tones. 

The green spectrum, produced with a 
frequency resolution of 2.5 Hz, does 
not distinguish the 2 Hz and 3 Hz 
tones as they are only 1 Hz apart. Part 
of the contribution of the 2 Hz tone is 
placed in the 0 Hz – 2.5 Hz bin, part of 
the contributions from the 2 Hz and 3 
Hz tones are placed in the 2.5 Hz – 5 
Hz bin, and part of the contribution of 
3 Hz tone is placed in the 5 Hz – 7.5 
Hz bin. 

The key insight here is the necessity 
to select an appropriate block size 
that provides a sufficient frequency 
resolution to distinguish dominant 
frequencies. 

Superposition of 2 Hz and 3 Hz Sine Tones  
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Figure 9. Superposition of sine tones as a function of time.

Figure 10. APS of a superposition of sine tones with a frequency bin width of 0.05 Hz.
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Data Windowing
The Fourier Transform assumes that 
the time signal is periodic and infinite 
in duration.  When only a portion of 
a record is analyzed, the block must 
be truncated by a data window to 
preserve the frequency characteristics. 
A window can be expressed in either 
the time domain or in the frequency 
domain, although the former is more 
common. To reduce the edge effects, 
which cause leakage, a window is 
often given a shape or weighting 
function. For example, a window can 
be defined as:

w(t) = g(t) -T/2 < t < T/2
        = 0  elsewhere

where g(t) is the window weighting 
function and T is the window duration.

The data analyzed, x(t) are then given 
by

x(t)=w(t)x(t)'

where x(t)' is the original data and x(t) 
is the data used for spectral analysis.

A window in the time domain is 
represented by a multiplication 
and hence, is a convolution in the 
frequency domain.   A convolution can 
be thought of as a smoothing function. 
This smoothing can be represented 
by an effective filter shape of the 
window, i.e., energy at a frequency in 
the original data will appear at other 
frequencies as given by the filter 
shape. Since time domain windows 
can be represented as a filter in the 
frequency domain, the time domain 
windowing can be accomplished 
directly in the frequency domain.  

In most DSA products, rectangular, 
Hann, Flattop and several other data 
windows are used.

Rectangular Window

w(k)=1 
 0 ≤ k ≤ N-1

Hann Window

0 ≤ k ≤ N-1
 
Since creating a data window attenuates 
a portion of the original data, a certain 

amount of correction is required to 
obtain an un-biased estimation of the 
spectra. In linear spectral analysis, 
an Amplitude Correction is applied; 
in power spectral measurements, an 
Energy Correction is applied. Refer to 
the following sections for details.

𝑤𝑤(𝑘𝑘) =  1
2 (1 − cos 2𝜋𝜋𝑘𝑘

𝑁𝑁 − 1) 
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Figure 12. Hann Window with a Block Size of 8192.
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Linear Spectrum
A linear spectrum is the Fourier 
transform of windowed time domain 
data. The linear spectrum is useful for 
analyzing periodic signals. Users can 
extract the harmonic amplitude by 
reading the amplitude values at those 
harmonic frequencies.

An averaging technique is often used 
in the time domain when synchronized 
triggering is applied. Or equivalently, 
the averaging can be applied to the 
complex FFT spectra. 

Because the averaging is taking place 
in the linear spectrum domain, or 
equivalently, in the time domain, based 
on the principles of linear transform, 
averaging does not make sense unless 
a synchronized trigger is used.

Most DSA products use the following 
steps to compute a linear spectrum:

Step 1
First a window is applied:

x(t) = w(t)x(t)'

where x(t)' is the original data and 
x(t) is the data used for the Fourier 
transform. (Example: Figure 13)

Step 2
The FFT is applied to x(t) to compute 
X(k), as described above. (Example: 
Figure 14)

Step 3
Averaging is applied to X(k). Here 
averaging can be either an Exponential 
Average or Stable Average. Result is 
Sx'.

 S'x = Average (X(k))
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Figure 14. Double-sided FFT.

Figure 13. Plot of the original signal and its windowed version.
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Step 4
To obtain a single-sided spectrum, 
double the value for symmetry about 
DC.

An Amplitude Correction factor is 
applied to S'x so that the final result has 
an un-biased reading at the harmonic 
frequencies.

Sx = (2S'x)/AmpCorr

where AmpCorr is the amplitude 
correction factor, defined as:

where w(k) is the window weighting 
function.

Applying this factor will correct the 
peak or RMS reading of a sine wave 
at a specific frequency regardless of 
which data window is applied. For 
example, if a 1.0-volt amplitude 1 
kHz sine wave sampled at 6.4 kHz is 
analyzed by a Linear Spectrum with 
Hann window, the spectral shape in 
Figure 15 is the result.

The top image depicts a digitized 
time waveform. The sine wave is not 
smooth because of the low sampling 
rate relative to the frequency of the 
signal. However, the well-known 
Nyquist principle indicates that the 
frequency estimate from the FFT will 
be accurate as long as the sampling 
rate is more than twice of the signal 
frequency. The frequency spectrum 
of the period signal will show an 
accurate frequency and level. Note 
that a higher sampling rate is required 
to obtain a more accurate sample of 
the time waveform.
 
The top graph displayed in Figure 
16 is in EUpk, i.e., the peak of the 
spectrum is scaled to the actual 0 
peak level, which is 1.0 in this case. 
The bottom graph shows the dB scale 
applied to the same signal. Since 0 dB 
is used as the reference, the 1.0 Vpk is 

now scaled to 0.0 dB. The dB display 
allows users to view the frequency 
points around the peak caused by the 
Hanning window.

The linear spectrum is saved internally 
in the complex data format with real 
and imaginary parts. Therefore, users 
should be able to view the real and 
imaginary parts, or amplitude and 
phase of the spectrum.

Power Spectrum
Spectral analysis is commonly used 
to characterize the operation of 
mechanical and electrical systems. The 
power spectrum (and power spectral 
density, PSD), is a popular type of 
spectral analysis because a “power” 
measurement in the frequency domain 
is one that engineers readily accept and 
apply in their solutions to problems. 

Single channel measurements (auto-
power spectra) and two channel 
measurements (cross-power spectra) 
both play important roles.

Power spectrum measurements use 
window amplitude correction to 
obtain an un-biased final spectrum 
amplitude reading at a specific 
frequency. PSD or energy spectral 
density (ESD) measurements always 
use window energy correction to 
obtain an un-biased spectral density or 
energy reading. 

In addition to the correction factors, 
spectrum density measurements (PSD 
and ESD) require normalization in 
accordance with the equivalent noise 
bandwidth (ENBW). This accounts 
for noise leaking into the DFT bin 
from adjacent bins.
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Figure 15. 1 kHz sine tone and its corresponding APS.
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Figure 16. Hanning windowing function applied to a pure sine tone.
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𝑁𝑁 ∑ 𝑤𝑤(𝑘𝑘)𝑁𝑁−1

𝑘𝑘=0

 



PAGE 13 | CRYSTAL INSTRUMENTS

To compute the spectra listed above, 
the instrument will follow these steps:

Step 1
A window is applied:

x(k) =w (k)x(k)'

where x(k)' is the original data and 
x(k) is the data used for a Fourier 
transform.

Step 2
The FFT is applied to x(t) to compute 
Sx

 
Next, the Periodogram method is used 
to compute the spectra with an area 
correction using Sx.

Step 3
Calculate the Power Spectrum 

Sxx = 2 ∙ Sx S
*

x ∙ AmpCorr2 (V2) 

Or calculate the Power Spectral 
Density:

Or calculate the Energy Spectral 
Density:

Where the Equivalent Noise 
Bandwidth (ENBW), frequency 
resolution (∆f), and EnergyCorr are 
defined as:

T is the time duration of the capture, N 
is the block size, w(n) is the window 
function and the symbol * is for 
complex conjugation. 

The three power spectral measurements 
listed above will automatically select 
the EU as EUrms because only EUrms 
has a physical meaning related to 
signal power.

After the power spectra are calculated, 
the averaging operation will be 
applied. More details about averaging 
operations are discussed in the next 
sections.

Spectrum Types 
EDM provides several spectrum 
types for Linear and Power Spectrum 
measurements. This section explains 
the concept of a spectrum type in 
detail.

First, consider signals with a periodic 
nature. These signals can be measured 
from a rotating machine, bearing, 
gearing, or any physical structure 
that operates with repetition. In this 
case, the user would be interested in 
amplitude changes at fundamental 
frequencies, harmonics, or sub-
harmonics. Users can select a spectrum 
type of EUpk, EUpkpk or EUrms. (Figure 
17)

𝑆𝑆𝑥𝑥 =  ∑ 𝑥𝑥(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁
𝑁𝑁−1

𝜋𝜋=0
 

 

2 ∙ 𝑆𝑆𝑥𝑥𝑥𝑥
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑉𝑉

2

𝐻𝐻𝐻𝐻) 
 

or 
 

2 ∙ 𝑆𝑆𝑥𝑥𝑥𝑥 ∙ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸2
∆𝑓𝑓  

2 ∙ 𝑆𝑆𝑥𝑥𝑥𝑥 ∙ 𝑇𝑇
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑉𝑉

2𝑠𝑠
𝐻𝐻𝐻𝐻 ) 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓 ∙
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2𝑁𝑁−1
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(∑ 𝑤𝑤𝑛𝑛
𝑁𝑁−1
𝑛𝑛=0 )2 

 

∆𝑓𝑓 = 𝑓𝑓𝑠𝑠
𝐸𝐸 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = √ 1
1
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A second scenario might consist of 
a signal with a random nature that is 
not necessarily periodic. It does not 
have obvious periodicity therefore 
the frequency analysis could not 
determine the “amplitude” at certain 
frequencies. However, it is possible 
to measure the rms. level, or power 
level, or power density level over 
certain frequency bands for such 
random signals. In this case, the user 
must select one of the spectrum types 
of EUrms

2/Hz, or EUrms/√Hz, which is 
called power spectral density, or root-
mean squared density. (Figure 18)

A third scenario might consist of a 
transient signal. It is neither periodic, 
nor stably random. In this case, the 
user must select the spectrum type 
as EU2/Hz2, which is called energy 
spectrum. (Figure 19)

In many applications, the nature of 
the data cannot be easily classified. 
Users should carefully interpret 
the data when different spectrum 
types are used. For example, in the 
environmental vibration simulation, 
a typical test uses multiple sine tones 
on top of a random profile, which is 
called Sine-on-Random. In this type 
of application, the user must observe 
the random portion of the data in the 
spectrum with EUrms

2/Hz and the sine 
portion of the data with EUpk.
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Figure 19. Plot of a non-periodic and non-random signal.
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Figure 20 provides a general flow-
chart to select one of the measurement 
techniques and spectrum types for 
linear or auto spectrum.

The following figures illustrate the 
results of different measurement 
techniques on a 1-volt pure sine tone. 
The figures include RMS, Peak or 
Peak-Peak value for the amplitude, 
or power value corresponding to its 
amplitude. Note that these readings 
can only be applied to a periodic signal. 
If these measurement techniques 
were applied to a signal with random 
nature, the spectrum would not be 
a meaningful representation of the 
signal. 

EUpk or EUpkpk

The EUpk and EUpkpk display the peak 
value or peak-peak value of a periodic 
frequency component at a discrete 
frequency. These two spectrum types 
are suitable for narrowband signals. 
(Figure 21)

EUrms
2S/HzEUrms

2/Hz EUrms/sqrt (Hz)

Select one of the spectrum
type: EUpk, EUpkpk, EUrms,

(EUrms)2

Window amplitude correction Window energy correction

Averaging

Linear
Spectrum

Sx

Power
Spectrum
Density
SxSx*T

Power
Spectrum

SxSx*

RMS Power
Spectrum
Density

Sqrt (PSD)

Energy
Spectrum

SxSx*TT

Classify the nature of data

Periodic (narrowband) Random (broadband) Transient (broadband)

Figure 20. Flow chart to determine measurement technique for various signal types.
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EUrms

The EUrms displays the RMS value of 
a periodic frequency component at a 
discrete frequency. This spectrum type 
is suitable for narrowband signals. 
(Figure 22)

EU2
rms  Power spectrum

The EU2
rms displays the power reading 

of a periodic frequency component at a 
discrete frequency. This spectrum type 
is suitable for narrowband signals. 
(Figure 23)
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Figure 22. Sine wave is measured with EUrms spectrum unit. The peak reading is 0.707 V. The 
sine waveform has a 1 V amplitude.
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EU2/Hz Power Spectrum Density
The EU2/Hz  is the spectrum unit used 
in power spectrum density (PSD) 
calculations. The unit is in engineering 
units squared divided by the equivalent 
filter bandwidth and provides power 
normalized to a 1 Hz bandwidth. This 
is useful for broadband and continuous 
signals. EU2/Hz and in fact, should be 
defined as EU2

rms/Hz. Many users will 
commonly shorten it as EU2/Hz. 

Figure 24 shows a white noise signal 
with 1 Vrms amplitude or 1 V2 in power 
level. The bandwidth of the signal is 
approximately 10000 Hz and the V2/
Hz reading of the signal is around 
0.0001 V2/Hz.  The 1 VRMS can be 
calculated as follows:

EU2 S/Hz, Energy Spectrum Density 
The EU2 S/Hz displays the signal in 
engineering units squared divided 
by the equivalent filter bandwidth, 
multiplied by the time duration of 
signal. This spectrum type provides 
energy normalized to a 1 Hz 
bandwidth, or energy spectral density 
(ESD). It is useful for any signals 
when the purpose is to measure the 
total energy in the data frame. Figure 
25 shows a random signal with a 1 volt 
RMS level in the ESD format.

The ESD is calculated as follows:

Values for ESD = values of PSD * 
Time Factor

where the Time Factor = (Block 
size)/∆f and ∆f is the sampling rate / 
block size.

Notice that in  EU2/Hz, or EU2S/Hz, 
EU really means the RMS unit of the 
EU, i.e., EUrms. 

It should also be noted that since a 
window is applied in time domain, 
which corresponds to a convolution in 

the linear spectrum, it is not possible 
to have both a valid amplitude and 
energy correction at the same time. 
Use Figure 20 to select the appropriate 
spectrum types.

In a Linear Spectrum measurement, 
a signal is saved in its complex 
data format which includes real 
and imaginary data. Afterwards, an 
averaging operation is applied to the 
linear spectrum. In a Power Spectrum 
measurement, the averaging operation 
is applied to the squared spectrum. 
Different averaging techniques will 

produce different results for Linear 
Spectrum and Power Spectrum despite 
using the same spectrum type.

Spectrum Types selection only 
applies to Power Spectrum and Linear 
Spectrum signals.  Spectrum Types do 
not apply to transfer functions, phase 
functions or coherence functions.

Figure 24. White noise with 1 volt RMS amplitude displays as 100 u V2
rms/Hz

1𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = √10000𝐻𝐻𝐻𝐻 ∙ 0.0001𝑉𝑉
2

𝐻𝐻𝐻𝐻  

Figure 25. Random signal with 1 volt RMS amplitude and Energy Spectrum Density format.
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Cross Spectrum
Cross spectrum or cross power 
spectrum density is a frequency 
spectrum quantity computed using 
two signals, usually the excitation 
and response of a dynamic system. 
Cross spectrum is typically used 
to compute the frequency response 
function (FRF), transmissibility, or 
cross correlation function and is not 
commonly used by itself.

Compute the cross-power spectral 
density Gyx between channel x and 
channel y using the following steps:

Step 1, compute the Fourier transform 
of input signal x(k) and response 
signal y(k):

Step 2, compute the instantaneous 
cross power spectral density

 Sxy = S*
x· Sy T

Step 3, average the M frames of Szz to 
get averaged PSD Gxx

 G'xy = Average(Sxy) 

Step 4, compute the energy correction 
and double the value for the single-
sided spectra

Gxy = 2G'xy/EnergyCorr

Frequency Response and 
Coherence Function
The cross power spectrum method is 
often used to estimate the frequency 
response function (FRF) between 
channel x and channel y. The equation 
is:

Hyx =  Gyx/Gxx 

where Gyx is the averaged cross-
spectrum between the input channel 
x and output channel y. Gxx is the 
averaged auto-spectrum of the input. 
Either power spectrum, power spectral 
density or energy spectral density can 
be used to compute the FRF because 
of the linear relationship between 
input and output.

Using the cross-power spectrum 
method instead of simply dividing 
the linear spectra between input 
and output to calculate the FRF will 
reduce the effect of the noise at the 
output measurement end, as illustrated 
in Figure 26.

The frequency response function has a 
complex data format. It can be viewed 
in real and imaginary or magnitude 
and phase format.

The coherence function is defined as:

where Gyx is the averaged cross-
spectrum between the input channel 
x and output channel y. Gxx and Gyy 
are the averaged auto-spectrum of the 
input and output. Power spectrum, 
power spectral density or energy 
spectral density can be used here 
because of the linear relationship 
between input and output so that any 
multiplier factors will be cancelled 
out.

Coherence is a statistical measure of 
how much of the output is caused by 

the input.  The maximum coherence 
is 1.0 when the output is perfectly 
correlated with the input and 0 when 
there is no correlation between input 
and output. Coherence is calculated 
by an average of multiple frames.  
When it is computed for only one 
frame, then the coherence function 
has a meaningless result of 1.0 due to 
the estimation error of the coherence 
function.

The coherence function is a non-
dimensional real function in the 
frequency domain. It can only be 
viewed in real format.

𝑆𝑆𝑥𝑥 =  ∑ 𝑥𝑥(𝑘𝑘) 𝑤𝑤(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁
𝑁𝑁−1

𝜋𝜋=0
 

 
 

𝑆𝑆𝑦𝑦 =  ∑ 𝑦𝑦(𝑘𝑘) 𝑤𝑤(𝑘𝑘)𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁
𝑁𝑁−1

𝜋𝜋=0
 

 

Figure 26. Frequency response function computation.
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Data Window 
Selection
Leakage Effect
Windowing of a simple signal, like 
a sine wave may cause its Fourier 
transform to have non-zero values 
(commonly called leakage) at 
frequencies other than the frequency 
of this sine. This leakage effect tends to 
be worst (highest) near sine frequency 
and least at frequencies farthest from 
sine frequency. The effect of leakage 
is easily depicted in the time domain 
when a signal is truncated. Figure 
27 shows the truncation significantly 
distorted the time signal after data 
windowing, hence causing a distortion 
in its frequency domain.

If there are two sinusoids with different 
frequencies, leakage can interfere 
with the ability to distinguish them 
spectrally. If their frequencies are 
dissimilar, then the leakage interferes 
when one sinusoid is much smaller in 
amplitude than the other. That is, its 
spectral component can be hidden or 
masked by the leakage from the larger 
component. But when the frequencies 
are near each other, the leakage can be 
sufficient to interfere even when the 
sinusoids are equal strength; that is, 
they become undetectable.

There are two possible scenarios 
where leakage does not occur. The 
first scenario is when the time capture 
is long enough to cover the complete 
duration of the signals. This can occur 
with short transient signals.  For 
example, in a hammer test, if the time 
capture is long enough it may extend 
to the point where the signal decays to 
zero. In this case, the data window is 
not needed.
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Figure 27. Illustration of the effect of windowing a truncating a signal poorly.
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The second scenario is when a 
periodic signal is sampled to perfectly 
synchronize with the signal period, so 
that an integer number of cycles of 
the signal are always acquired with 
a block of capture. For example, if a 
sine wave has a frequency of 1000 Hz 
and the sampling rate is set to 8000 
Hz, each sine cycle would have 8 
integer points. If 1024 data points are 
acquired, then 128 complete cycles of 
the signal are captured. In this case, 
with no window applied users will still 
obtain a leakage-free spectrum.

Figure 28 shows a sine signal at 1000 
Hz with no leakage resulting in a sharp 
spike. Figure 29 shows the spectrum 
of a 1010 Hz signal with significant 
leakage resulting in a wide peak. 
The spectrum has significant energy 
outside the narrow 1010 Hz frequency. 
It is observed that the energy leaks out 
into the surrounding frequencies.  

 

 

Figure 28. Sine spectrum with little leakage.
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Figure 29. Sine spectrum with significant leakage.
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Several windowing functions have 
been developed to reduce the leakage 
effect. Figure 30 shows a Flattop 
window applied to the same sine 
signal with a frequency of 1010 Hz.

When a Flattop window is used, the 
leakage effect is reduced. Both the sine 
peak and noise floor are visible now. 
However, this type of data windowing 
operation also results in a “fatter” 
and less accurate spectrum peak. The 
remaining sections will discuss how to 
choose different data windows.
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Figure 30. Sine spectrum with Flattop windowing function.
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Data Window Formula
This section describes the math formula used for each data window. 

Uniform window (rectangular)

w(k) = 1.0

Uniform is identical to no window function.

Hamming window

Hann window

The Hann and Hamming windows belong to the category of "raised cosine" windows, and 
are respectively named after Julius von Hann and Richard Hamming. The term "Hanning 
window" is sometimes used to refer to the Hann window but is ambiguous as it is easily 
confused with Hamming window.

Blackman window

for k = 0~N-1

Flattop window

for k = 0~N-1

Kaiser Bessel window

for k = 0~N-1

Exponential Window
The shape of the exponential window is that of a decaying exponential. The following 
equation defines the exponential window.

for k = 0~N-1

where N is the length of the window, w(k) is the window value, and final is the final value 
of the whole sequence. The initial value of the window is one and gradually decays toward 
zero. 

𝑤𝑤(𝑘𝑘) =  0.53836 − 0.46164 cos( 2𝜋𝜋𝑘𝑘
𝑁𝑁 − 1) 

 

𝑤𝑤(𝑘𝑘) =  0.5 − 0.5 cos( 2𝜋𝜋𝑘𝑘
𝑁𝑁 − 1) 

 

𝑤𝑤(𝑘𝑘) = 0.84 −  0.5 cos 2𝜋𝜋𝑘𝑘
𝑁𝑁 − 1   + 0.08 cos 4𝜋𝜋𝑘𝑘

𝑁𝑁 − 1 

𝑤𝑤(𝑘𝑘) = 1 −  1.93 cos 2𝜋𝜋𝑘𝑘
𝑁𝑁 − 1   + 1.29 cos 4𝜋𝜋𝑘𝑘

𝑁𝑁 − 1 − 0.388 cos 6𝜋𝜋𝑘𝑘
𝑁𝑁 − 1    + 0.032 cos 8𝜋𝜋𝑘𝑘

𝑁𝑁 − 1 
 

𝑤𝑤(𝑘𝑘) = 1.0 −  1.24 cos 2𝜋𝜋𝑘𝑘
𝑁𝑁 − 1  + 0.244 cos 4𝜋𝜋𝑘𝑘

𝑁𝑁 − 1  + 0.00305 cos 6𝜋𝜋𝑘𝑘
𝑁𝑁 − 1 

𝑤𝑤(𝑘𝑘) =  𝑒𝑒(𝑘𝑘 ln (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)
𝑁𝑁−1 ) 
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Selecting the Correct Data 
Window
This section will discuss how to select 
the data window. Figure 31 shows the 
spectral shape of four typical windows 
corresponding to their time waveform. 
 
Observe that the spectral shape of the 
data window is always symmetric. 
The spectral shape can be described 
as a main lobe and several side lobes. 
(Figure 32)
 
The following table lists the 
characteristics of several data 
windows.

Frequency Characteristics of Data 
Windows

Window –3 dB 
Main 
Lobe 
Width 
(bins)

–6 dB 
Main 
Lobe 
Width 
(bins)

Maximum 
Side Lobe 
Level (dB)

Uniform 
(none)

0.9 1.2 –13

Hanning 1.4 2.0 –32
Hamming 1.3 1.8 –43
Blackman 1.6 2.3 –58
Flattop 2.9 3.6 –44

Main Lobe
The center of the main lobe of a 
window occurs at each frequency 
component of the time-domain signal. 
By convention, to characterize the 
shape of the main lobe, the widths 
of the main lobe at –3 dB and –6 dB 
below the main lobe peak describe 
the width of the main lobe. The unit 
of measure for the main lobe width is 
FFT bins or frequency lines.

The width of the main lobe of the 
window spectrum limits the frequency 
resolution of the windowed signal. 
Therefore, the ability to distinguish 
two closely spaced frequency 
components increases as the main 
lobe of the smoothing window 
narrows. As the main lobe narrows 
and spectral resolution improves, the 
window energy spreads into its side 
lobes, increasing spectral leakage 
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Figure 32. Spectral shape of common windowing functions.

Figure 33. Window frequency response showing main lobe and side lobes.
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and decreasing amplitude accuracy. 
A trade-off occurs between amplitude 
accuracy and spectral resolution.

Side Lobes
Side lobes occur on each side of 
the main lobe and approach zero 
at multiples of fs/N from the main 
lobe. The side lobe characteristics 
of the smoothing window directly 
affect the extent to which adjacent 
frequency components leak into 
adjacent frequency bins. The side lobe 
response of a strong sinusoidal signal 
can overpower the main lobe response 
of a nearby weak sinusoidal signal.

Maximum side lobe level and side 
lobe roll-off rate characterize the side 
lobes of a smoothing window. The 
maximum side lobe level is the largest 
side lobe level in decibels relative to 
the main lobe peak gain. 

Guidelines to Select Data 
Windows
If a measurement can be made without 
an occurrence of the leakage effect, 
then do not apply any window (in 
the software, select Uniform.). As 
discussed before, this only occurs 
when the time capture is long enough 
to cover the whole transient range, or 
when the signal is exactly periodic in 
the time frame.

If the purpose of the analysis is to 
discriminate two or multiple sine waves 
in the frequency domain, spectral 
resolution is very critical. Select a 
data window with a very narrow main 
slope for these applications. Hanning 
is a good choice.

If the purpose of the analysis is to 
determine the amplitude reading 
of a periodic signal, i.e., to read 
EUpk, EUpkpk, EUrms or EUrms

2, and 
the amplitude accuracy of a single 
frequency component is more 
important than the exact location of 
the component in a given frequency 
bin, select a window with a wide main 
lobe. Flattop windows are often used.

When analyzing transient signals such 
as impact and response signals, it is 
better not to use the spectral windows 
because these windows attenuate 
important information at the beginning 
of the sample block. Instead, use the 
Force and Exponential windows. A 
Force window is useful in analyzing 
shock stimuli because it removes 
stray signals at the end of the signal. 
The Exponential window is useful for 
analyzing transient response signals 
because it damps the end of the signal, 
ensuring that the signal fully decays 
by the end of the sample block.

If the nature of the data is random or 
unknown, select the Hanning window. 

Averaging 
Techniques
Averaging is widely used in spectral 
measurements. It improves the 
measurement and analysis of signals 
that are purely random or mixed 
random and periodic. Averaged 
measurements can yield either higher 
signal-to-noise ratios or improved 
statistical accuracy.

Typically, three types of averaging 
methods are available in DSA 
products. They are: 

 ● Linear Averaging

 ● Exponential Averaging

 ● Peak-Hold

Linear Averaging
In linear averaging, each set of data 
(a block) contributes equally to the 
average. The value at any point in the 
linear average is given by the equation:

Averaged = Sum of blocks/N

N is the total number of the blocks. 
The advantage of this averaging 
method is that it is faster to compute 
and the result is un-biased. However, 
this method is suitable only for 
analyzing short signal records or 

stationary signals since the average 
tends to stabilize. The contribution of 
new blocks eventually will cease to 
change the value of the average. 

A target average number is usually 
defined. The algorithm is made so that 
before the target average number is 
reached, the process can be stopped, 
and the averaged result can still be 
used.

When the specified target averaging 
number is reached, the instrument 
usually will stop the acquisition 
and wait for instructions to perform 
another round of data acquisition.

Moving Linear Averaging
In a regular Linear Average, the data 
rate of the output of the averaging 
operator is only 1/N of that of the 
original signal. Therefore, more 
averages take longer to compute, 
and measurement time is increased. 
Moving Linear Averaging can reduce 
the overall measurement time. Moving 
Linear Averaging uses overlapped 
input data points to generate more 
than 1/N results within a period of 
time. The advantage is a resulted trace 
update time that can be much shorter 
than the linear averaging period. 

Moving Linear Average is computed 
by

Where x[k] is the input data, with 
a sampling rate of T,y[n] as the 
output data, with Trace Update 
rate ∆T,Average(T) as the period of 
Linear Average and ,N as the total 
samples used for Linear Average.N = 
AverageT/T

𝑦𝑦[𝑛𝑛] = 1
𝑁𝑁  ∑ 𝑥𝑥[𝑛𝑛 − 𝑗𝑗]

𝑁𝑁−1

𝑗𝑗=0
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The Moving Linear Averaging is 
illustrated in Figure 33. Assume the 
averaging period is AverageT but the 
progressive time for each averaging 
operation is deltaT, the output buffer 
will have a data range of deltaT 
instead of AverageT.

The Moving Linear Average is useful 
in many situations. For example, in 
Sound Level Meter, Leq is defined as 
a linear averaged value over a long 
period of time, such as 1 second to 
24 hours. Assuming the AverageT 
is 1 hour, without a moving linear 
average, in a 24 hour period, only 24 
readings are obtained. This is not very 
useful. Moving averaging obtains 
readings every 1 second, for the linear 
averaging of the past 1 hour.

Exponential Averaging
In exponential averaging, blocks do 
not contribute equally to the average. 
A new block is weighted more heavily 
than old ones. The value at any point 
in the exponential average is given by:

y[n] = y[n-1] ∙ (1-α) + x[n] ∙ α

where y[n] is the nth average and 
x[n] is the nth new block. α is the 
weighting coefficient. Usually, α is 
defined as 1/(Number of Averaging). 
For example in the instrument, if 
the Number of Averaging is set to 8 
and the averaging type is selected as 
exponential averaging, then α =1/8.

The advantage of this averaging 
method is that it can be used 
indefinitely. That is, the average 
will not converge to some value 
and stay there, as is the case with 
linear averaging. The average will 
dynamically respond to the influence 
of new blocks and gradually ignore 
the effects of old blocks. 

Exponential averaging simulates the 
analog filter smoothing process. It will 
not reset when a specified averaging 
number is reached.

A drawback of exponential averaging 
is that a large value may embed too 
much memory into the average result. 
If there is a transient large value as 
input, it may take a long time for 
y[n] to decay. On the contrary, the 
contribution of small input value 
of x[n] will have little impact to 
the averaged output. Therefore, an 
exponential average fits a stable 
signal better than a signal with large 
fluctuations.

Peak-Hold
This method, technically speaking, 
does not involve averaging in the 
strict sense of the word. Instead, the 
“average” produced by the Peak-
Hold method produces a block that 
at any point represents the maximum 
envelope among all the component 
blocks. The equation for Peak-Hold is:

Peak-Hold is useful for maintaining 
a record of the highest value attained 
at each point throughout the sequence 
of ensembles. Peak-Hold is not a 
linear math operation so it should be 
used carefully. It is acceptable to use 
Peak-Hold in auto-power spectrum 

measurements, but meaningful results 
for FRF or Coherence measurements 
are not acquired using Peak-Hold.

Peak-Hold averaging will reset after a 
specified averaging number is reached.

Figure 33. Illustration of a moving linear average.
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Linear Spectrum versus Power 
Spectrum Averaging
Averaging can be applied to either 
linear spectrum or power spectrum. 
To reduce the spectral estimation 
variance, use power spectral 
averaging. To extract repetitive 
or periodic small signals from a 
noisy signal, use triggered capture 
and average them in linear spectral 
domain. Linear Spectrum averaging 
must be performed on a triggered 
event so that the time signal of one 
average is correlated with other 
similar measurements. Averaging 
in the Linear Spectrum domain 
does not make sense without a time 
synchronizing mechanism. Linear 
spectrum averaging is also called 
Vector averaging. It averages the 
complex FFT spectrum. (The real 
part is averaged separately from the 
imaginary part.) This can reduce the 
noise floor for random signals since 
they are not phase coherent from time 
block to time block.

Power Spectrum Averaging is 
also called RMS Averaging. RMS 
averaging computes the weighted 
mean of the sum of the squared 
magnitudes (FFT times its complex 
conjugate). The weighting is either 
linear or exponential. RMS averaging 
reduces fluctuations in the data but 
does not reduce the actual noise 
floor. With a sufficient number of 
averages, a very good approximation 
of the actual random noise floor can 
be displayed. Since RMS averaging 
involves magnitudes only, displaying 
the real or imaginary part, or phase, of 
an RMS average has no meaning and 
the power spectrum average has no 
phase information.

Table 1 provides a summary of the 
averaging methods described above.
 
Table 1. Summary of Averaging Methods.

Linear 
Spectrum 
Averaging

Power 
Spectrum 
Averaging

No statistical 
spectral 

estimate, for 
deterministic 
signals only.

Statistical 
spectral 
estimate, 

for signals 
with random 

characteristics.

Signal must 
have periodic 
components.

Applicable 
to both pure 
random and 

mixed random/
periodic signals.

Improve SNR. Does not 
improve SNR.

Requires a 
synchronized 

trigger in fixed 
relation to the 

signals.

Does not require 
a synchronized 

trigger.

Spectrum Estimation Error
Users may wonder how much 
confidence should have when taking 
a spectral measurement. This is an 
academic topic that can go very 
deep. First, classify the signal types. 
The spectrum estimation can be very 
accurate with very few averaging if 
the user is measuring a deterministic 
signal. More averaging must be used 
if the signal has a random nature, 
with partially random, or significant 
measurement noise, 

Assuming the time data is captured 
from a stationary random process 
and various spectra is calculated 
using window, FFT and averaging 
techniques, we can trust the measured 
spectra can be measured by a statistical 
quantity, standard deviation. The 
following table provides a few useful 
equations to compute the standard 
deviation of the spectra when linear 
averaging is used:

Functions being 
estimated

Standard 
Deviation

Auto-spectrum 
Gxx

Cross-spectrum 
|Gyx|

 

Coherence 
Function γ2

yx

 

Frequency 
Response 

Function Hyx

  
where n is the average number in 
linear averaging. The transfer function 
is computed in the cross-power 
spectrum method as presented earlier. 

Assume a signal is random and has an 
expected power spectral density at 0.1 
V2/Hz. The goal of a measurement is 
to average a few power spectra and to 
estimate such an expected value. If the 
average number is 1, meaning, with no 
average, the standard deviation of the 
error of such a measurement will be 
100%. When we average two blocks 
of auto power spectra, the standard 
deviation of the error will become 
1/(√2) = 70.7%   When the average 
number is increased to 100, the 
standard deviation of the error of the 
reading is 10%. This means that the 
reading is likely in the neighborhood 
of (0.1±0.01) V2/Hz.

Now if this signal has a deterministic 
nature, say a sine wave, the spectral 
estimation error will only be applied 
to the random portion, i.e., the noisy 
portion, of this signal.

n
1

nCyx ||
1

nCyx
Cyx

||
2)1( 2−

nCyx
Cyx

2||
)1( 2−
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Overlap Processing
To increase the speed of spectral 
calculation, overlap processing can be 
used to reduce the measurement time. 
The diagram in Figure 34 shows how 
the overlap is realized. 

As shown in Figure 34, when a frame 
of new data is acquired after passing 
the Acquisition Mode control, only a 
portion of the new data will be used. 
Overlap calculation will speed up 
the calculation with the same target 
average number. The percentage of 
overlap is called overlap ratio. 25% 
overlap means 25% of the old data will 
be used for each spectral processing. 
0% overlap means that no old data 
will be reused.

Overlap processing can improve 
the accuracy of spectral estimation. 
This is because when a data window 
is applied, some useful information 
is attenuated by the data window on 
two ends of each block. However, it 
is not true that the higher the overlap 
ratio the higher the spectral estimation 
accuracy. For Hanning window, when 
the overlap ratio is more than 50%, the 
estimation accuracy of the spectra will 
not be improved. 

Another advantage of applying 
overlap processing is that it helps 
update the display more quickly. 

Single Degree of Freedom 
System
This section briefly discusses the 
single degree of freedom (SDOF) 
system as background knowledge for 
the frequency response function and 
damping estimation methods. 

The vibration nature of a mechanical 
structure can be decomposed into 
multiple, relatively independent 
Single-Degree-of-Freedom systems. 
Each SDOF system can be modeled as 
a mass fixed to the ground by a spring 
and damper in parallel as shown in 
Figure 35. The frequency response 

function (FRF) of this mechanical 
system is also shown.

The differential equation of motion for 
this system is given by

where m is the mass, k is the spring 
stiffness and c is the damping 
coefficient.

The natural frequency ωn and damping 
ratio ζ can be calculated from the 
system parameters as  

Figure 34. Illustration of overlap processing.
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Figure 35. SDOF system and its frequency response.
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The natural frequency, ωn, is in units 
of radians per second (rad/s). The 
typical units displayed on a digital 
signal analyzer are in Hertz (Hz). 
The damping ratio, ζ, can also be 
represented as a percent of critical 
damping – the damping level at which 
the system experiences no oscillation. 
This is a more common understanding 
of modal damping. Figure 36 illustrates 
the response of a SDOF system to a 
transient excitation showing the effect 
of different damping ratios.

A SDOF system with light damping 
factor will have longer oscillation in 
a transient process. This is why the 
exponential window can be selected to 
reduce the leakage effect in its spectral 
analysis. 

dB and Linear Magnitude
Amplitude or power spectra are most 
often shown in the logarithmic unit 
decibels (dB). It is easy to view wide 
dynamic ranges using this unit of 
measure; that is, it is easy to see small 
signal components in the presence of 
large ones. The decibel is a unit of 
ratio and is computed as follows.

where Power is the measured power 
and Pref is the reference power.

Use the following equation to compute 
the ratio in decibels from amplitude 
values.

where Ampl is the measured amplitude 
and Aref is the reference amplitude.
When using amplitude or power as the 
amplitude-squared of the same signal, 
the resulting decibel level is exactly 
the same. Multiplying the decibel 
ratio by two is equivalent to having 
a squared ratio. Therefore, the same 
decibel level and display is obtained 
regardless of whether the amplitude or 
power spectrum is used.

As shown in the preceding equations 
for power and amplitude, a reference 
must be supplied for a measure 
in decibels. This reference then 
corresponds to the 0 dB level. 
Different conventions are used for 
different types of signals. A common 
convention is to use the reference 1 
Vrms for amplitude or 1 Vrms squared 
for power, yielding a unit in dBV or 
dBVrms. In this case, 1 Vrms corresponds 
to 0 dB. Another common form of 
dB is dBm, which corresponds to 
a reference of 1 mW into a load of 
50 Ω for radio frequencies where 0 

dB is 0.22 Vrms, or 600 Ω for audio 
frequencies where 0 dB is 0.78 Vrms.

Figure 37 shows a sine wave with 1 
V amplitude displayed in dB. It shows 
the peak value of this sine wave as 0 
dB since the reference is 1 Vpk.

Figure 36. Step response of a SDOF system with different damping ratios.
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Figure 37. 1-Vpk sine signal in frequency domain with dB scaling.
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Another display format is called Log, 
or LogMag. The Log display shows 
the signal scaled logarithmically with 
the grid values and cursor readings in 
actual engineering values. Figure 38 
depicts the same signal in LogMag. 

When the dB reference is not specified, 
the dB reference is 1.0 engineering 
unit. In acoustics applications, the dB 
reference for the sound pressure value 
is set to 20 uPa. The same input signal 
will result in different dB readings 
when the dB reference is changed.
 
Transient Capture 
and Hammer Testing
Transient Capture
The previous sections discussed how 
the acquisition mode can be defined 
and selected on the DSA (Dynamic 
Signal Analyzer) device. This chapter 
will demonstrate how to use DSA to 
conduct hammer testing. Hammer 
testing refers to impact or bump 
testing that is conducted using an 
impact hammer to apply an impulsive 
force excitation to a test article while 
measuring the response excitation 
from an accelerometer or other sensor. 
This type of measurement is a transient 
event that usually requires triggering, 
averaging, and windowing.  First, let’s 
briefly review the Transient Capture 
function on DSA.

Transient Capture is one of the 
most commonly used functions for 
dynamic data acquisition. (Figure 
39) In DSA, the Transient Capture 
function is implemented by setting up 
the Acquisition Mode.  Acquisition 
Mode defines how to transform the 
time streams into block-by-block 
time signals. It sets the trigger and 
the overlapping processing. The 
instrument acts as a data recorder 
before the Acquisition Mode stage. 
After Acquisition Mode, it acts as a 
signal analyzer.

Besides Acquisition Mode, the user 
must first enable at least one time 
stream as a trigger candidate in the 
DSA. Trigger candidates are time 
streams that can be selected as a 
trigger source. The names of these 
trigger candidates will be passed to 
the DSA. During runtime, one of the 
trigger source candidates must be 
selected as the trigger source.

Figure 38. 1-Vpk sine signal in frequency domain with LogMag scaling.
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Impact Hammer Testing
Impact hammer testing is typically 
conducted with a signal analyzer to 
measure FRFs of the device under test. 
The FRFs can be used to determine 
the modal properties of the device 
such as the natural frequencies and 
damping ratios. Data can be exported 
to compute mode shapes with third 
party modal analysis software.  

An impact hammer test is the most 
common method of measuring FRFs. 
The hammer imparts a transient 
impulsive force excitation to the 
device. The impact is intended to 
excite a wide range of frequencies 
so that the DSA can measure the 
vibration of the device across this 
range of frequencies. The bandwidth 
or frequency content of the excitation 
input depends on the size and type 
of impact hammer that is used. The 
dynamic force signal is recorded by 
the DSA. After the impact, the device 
vibrations are measured with one 
or more accelerometers or another 
sensor and are recorded by the DSA. 
The DSA then computes the FRF by 
comparing the force excitation and the 
response acceleration signals. Impact 
testing is depicted in Figure 40.

The following equipment is required 
to perform an impact test:

1. An impact hammer to excite the 
structure. We recommend using 
an impact hammer with an IEPE 
output for DSA applications, which 
allows the hammer to be connected 
directly to the analyzer without an 
extra signal conditioning unit. 

2. One or multiple accelerometers that 
are fixed on the structure. Again, 
IEPE accelerometers can be used 
directly with the DSA and without 
an additional signal conditioning 
unit.

3. Dynamic Signal Analyzer, either 
CoCo or Spider hardware platform

4. EDM Modal software can be 
used to extract the resonance 

frequencies, damping factors of the 
structure, and modal shapes. The 
mode shapes can be used to animate 
the vibration modes.

Figure 40. Illustration of a typical impact test and signal processing.
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A wide variety of structures and 
machines can be impact tested. 
Different sized hammers are required 
to provide the appropriate impact 
force, depending on the size of the 
structure; small hammers for small 
structures, large hammers for large 
structures. Realistic signals from a 
typical impact test are illustrated in 
Figure 41.

Impact Test Analyzer Settings
The following settings are used for 
impact testing.  

1. Trigger Setup including trigger 
level and pre-trigger delay are used 
to capture the transient signal for 
FRF processing. It is important to 
capture the entire short transient 
signal in the sampling window of 
the FFT analyzer. To ensure that 
the entire signal is captured, the 
analyzer must be able to capture 
the impulse and impulse response 
signals prior to the occurrence of 
the impulse with the pre-trigger. 

2. Force & Exponential Windows. 
Two common time domain 
windows that are used in impact 
testing are the force and exponential 
windows. These windows are 
applied to the signals after they 
are sampled, but before the FFT 
is computed in the analyzer. 
 
The force window is used to remove 
noise from the impulse (force) 
signal. Ideally, an impulse signal 
is non-zero for a small portion of 
the sampling window, and zero 
for the remainder of the window 
time period. Any non-zero data 
following the impulse signal in 
the sampling window is assumed 
to be measurement noise. CoCo 
has a unique way to implement 
the force window. This was 
discussed in the data windowing 
section in the previous chapter. 
 
The exponential window is applied 
to the impulse response signal. 

The exponential window is used to 
reduce leakage in the spectrum of 
the response.

3. Accept/Reject: Because accurate 
impact testing results depend 
on the skill of the operator, FRF 
measurements should be made with 
averaging, a standard capability in 
all modern FFT analyzers. FRFs 
should be measured using at least 
4 impacts per measurement. Since 
one or two of the impacts during the 
measurement process may be bad 
hits (too hard causing saturation, 
too soft causing poor coherence 
or a double hit causing distortion 
in the spectrum), an FFT analyzer 
designed for impact testing should 
have the ability to accept or reject 

the result of each impact after 
inspecting the impact signals. An 
accept/reject capability saves a lot 
of time during impact testing since 
users are not required to redo all 
measurements in the averaging 
process after one bad hit.

4. Modal Damping Estimation. The 
width of the resonance peak is a 
measure of modal damping. The 
resonance peak width should also be 
the same for all FRF measurements, 
meaning that modal damping is the 
same in every FRF measurement. 
A good analyzer should provide an 
accurate damping factor estimate. 
CoCo uses a curve fitting algorithm 
to estimate the damping factor. The 
algorithm reduces the inaccuracy 
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right shows response acceleration time signal and bottom shows FRF spectrum.
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caused by the poor spectrum 
resolution or noise. 

5. Modal Frequency Estimation. 
The analyzer must provide the 
capability of estimating the 
resonance frequencies. DSA uses an 
algorithm to identify the resonance 
frequencies based on the FRF.

Time Domain Analysis
Constraints related to analysis in 
the time-domain domain diverge 
from those in the frequency 
domain, especially concerning 
the choice of sampling rate. As 
an example, constructing Shock 
Response Spectrums involves using 
measurements of peak values observed 
in the time-domain. A shock pulse is 
a transient event and does not exhibit 
periodic behavior. To capture the 
peak value of a shock pulse, sampling 
at the Nyquist rate may be too low. 
This is better understood through an 
illustration.

Consider the following half-sine 
shock pulse in Figure 42.

Now, the goal is to sample the pulse 
at a rate sufficient to capture the 
peak amplitude. Suppose the pulse 
is sampled at 80 Hz, the obtained 
waveform is shown in Figure 43.
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Figure 42. Plot of a half-sine shock pulse as a function of time.
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Figure 43. Plot of a shock pulse and its sampled version acquired at 80 Hz.



PAGE 33 | CRYSTAL INSTRUMENTS

The sampling rate is not fast enough to 
capture the peak in this case. A shock 
response spectrum generated with the 
sampled data would be inaccurate. 
Now, if the pulse was sampled at 400 
Hz instead of 80 Hz, the waveform 
depicted in Figure 44 would have been 
captured.
 
By sampling at 400 Hz, the collected 
samples are in proximity to the peak of 
the original waveform, allowing us to 
accurately construct a shock response 
spectrum. In general, for time-domain 
analysis, it is recommended to sample 
signals at a rate 10 times higher than 
the anticipated highest frequency 
component. This is so that the peak 
measurement of the pulse is within 5% 
of its true peak.

Figure 45. Plot of a shock pulse and its sampled version acquired at 400 Hz.
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Moreover, a high sampling rate is 
necessary to capture high-frequency 
events. Transients are typically short-
lived, abrupt changes in a signal, 
like a sudden spike. These rapid 
changes that characterize transients 
in the time-domain correspond to 
high-frequency components in the 
frequency domain. Thus, to accurately 
measure the composition of the 
energy in a transient signal, a high 
sampling rate is required to generate 
a spectrum with a range wide enough 
to accommodate the high-frequency 
components. Figure 45 illustrates the 
disparity in detail between the two 
spectra resulting from the variations 
in sampling rates.
 

Figure 45. Frequency spectra of a half-sine signal sampled at 128 Hz and 512 Hz.
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