A CRYSTAL

INSTRUMENTS

ATFX SIGNAL READER API (C#, PYTHON, MATLAB,
LABVIEW)

August 4, 2022
Document ver. 3.6

© Crystal Instruments Corporation

www.crystalinstruments.com | info@go-ci.com

Page 0 of 139

Contents

ATFX SIGNAL READER API (C#, PYTHON, MATLAB, LABVIEW) 6
ATFX API PACKAGE 10
T e 1o [l O] 1 = | USRNSSR 10
HOW t0 INStAll the ATFX AP ..ottt nne e 10
Unreadable DLL Files Despite Correct File Path...........ccccocovvveiieiiiie e, 10
Blank CHM File DiSPIay ISSUEc.eciiieieiieiie ettt nne e 10
Recommended Versions for Python, Matlab & LabVIEWcccccooviiiniiiiiinieec e, 11
QUICK START 13
Reading a Frequency Domain Signal Framec.cccooiiiieiieie e 13
(05 000 [TSRS PRUSURPPRRN 14
PYENON COUR......ceice bbbttt 15
MALIAD COOR.....veivieieie ettt bbb been e e e e 17
Reading a Time Domain Signal Frame..........ccccciiieiieiicic e 18
(05 0 o[- OSSPSR 19
Y1 110 1T O [SR RRPSSURT 20
MALIAD COOR.....veivieieie ettt bbb been e e e e 21
Extracting the Date and Time Of @ RECOITINGcvviiieiiiiiiiieieeee e 23
(OO0 o [2SSOSR PRSPPI 24
PYENON COUEottt sttt e st e et e saeesaeesteensesteenbeaneenre s 25
Y 11 Lo T 0T LRSS 27
Reading GPS Data from a ATFX FIle ...c..ooviiieiec e 28
(OO0 o [TSP PRRURPRRPN 29
PYENON COUR......ceiiee bbbt b et 31
MALIAD COOR.....veeeieee ettt et bbb et e e neene e e 32
ATFX API C# CODE EXAMPLES 34
BUIIAING the CH DEIMO ...ttt e et et eebe e snaeanbaeanee s 34
Importing and Referencing C# DLL FileS.........ccooviiiiiiiiii e 37
Opening @ ATEX File — Start HEreccviiiieeie ettt 38
What is a Recording VS. SIGNAI?ccuoiiiiiieiecce et 38
Finding the Signal for a particular channel............cccoooiiiiiiii e, 39
WAL IS @ FTAIME? ...ttt sttt b et e et ne e nbe e e nnes 39
AN end-to-end COde EXAMPIEc.oioiie i 41
Additional File Components - .TS and .GPS........ccocoiiiiiiiiieiee e 41
Opening a Time Stamp Signal (TS) or GPS Location File...........ccooeiiiiiiiiieeieen 42

Page 1 of 139

Reading the RECOId PrOPEITIES.uiiieieiieieeie ettt sreenne e 43

Calling Individual Recording PrOPEITYccoviieieiieiiiesieseseee e 44
GEtLISTOTPIOPEITIES ...ttt bbbttt 44
REAAING the GPS DALAcvecviiiieieiie sttt be e e sreesneeneesreenne e 45
Extracting the Date and Time 0f @ RECOIAINGoovviiiiiiiiiiee e 47
Reading the Input Channel Table Data............ccooiiiiiiiiiiee e 49
Reading the Input Channel Data Through Utility Class..........cccccceiiviiiiiiiiiiie e, 51
Calling Individual Properties of Input Channelcocooiiiiiiii e, 51
Reading the Signal PrOPEITIEScciiiiiiiiiieieee e 52
Using a List to Store and Recall Signals............cccooeiviiiiiiiec e 53
Basic Signal INfOrMationcc.ooiiiiiiii e 54
Advance Signal INFOrMAatioNoovoiiiiii e 55
AdVANCE GENETALE TIMIE ..o.viiiiiiieieeieieie ettt bbb e bbb e r e ne e e e 59
Reading the Data Values of a Signal Frame ... 60
Reading Frequency Signal Frame Dataccoouvieiiieriniiesenesee e 63
Getting Spectrum Types or ENgINEering UNItS.........ccoviveiiiieii e 66
Reading NVH Test Configuration Parameterscccooereriienineeieese e 67
Reading a Signal NVH Parameter KEYcoiiiiiiiiiiiei st 69
Reading a Signal NVH Parameter Key Data TYPE......cccccveiieieiieieee e 69
Reading a List of NVH Parameter Keys Through Utility Class...........ccccccoveveiieiiecvciienen, 69
Reading a NVH Parameter Key & Type Through Utility Class..........cccooeviniiiniiiiicneen, 70
Reading Merged INFOrmMation...........c.ooioiiiiiiecc e 71
ATFX APl METHOD LIST 73
List Of Available MOAUIEScouiiieiee e e enes 73
Recording Manager MOGUIEcoviiiiiiiie e 73
ODS ReCOrding MOUUIEoooiiiiie e be et re e 74
ODS SIgNal MOUUIE.... ..o et e e et e e e sraeere e 76
Date TIMENANO MOUUIE ..o enne e 79
] T Y1, (oo LU L PP SOPUSPRN 80
PrOPEITY GIOSSAIYcivieiii ittt ettt e et bt et e e st e et e e s ae e e beeabeeebeenreaenees 81
RECONTINGPTOPEITY ...ttt b bbbt 81
SIGNAIPTOPEITIES ...ttt e et e e b e et e e sae e e beearaeebeesneeanees 82
NVHParameterSet Parameter KEYScvuiiiiiiiiiiee e 83
AOENVITONMENT. ...ttt b bt b et b et bbb et e e e e e e 86

Page 2 of 139

N RV 1AV Lo T 0T (] 1 S 86

NVHENVIFONMENT ...ttt sttt te st e be et e st e sneenteeneesreense e 87
ATFX APl CODING LANGUAGES 88
CH DEIMO PrOGIAM ...ttt b e n e nne s 88
PYNON DEMO SCIIPL.....eiiieieiie et te et e st e e e s aaeste e e e aneesraebeeneesreas 94
IMPOrtiNG CH# DLL FIlES ... s 94
Python Script Code EXAMPIE ... 95
LADVIEW DEMO SCHIPL.....viitieiieie ettt sttt et ne e beenbe s e sneeneanes 98
IMPOrtING CH# DLL FIlES ... 98
LabVIEW Block Diagram EXAMPIEooiiiiiiiiiiieeseiseee e 100
Matlah DEMO SCIIPL.....ccuieiiiiciiece ettt sr e et e et e sneesreenreenes 102
IMPOrtiNG CH# DLL FIlES ... 102
Matlab Script Code EXAMPIE.......ccooiiiiiiiiiieeee e 103
POST ANALYSIS SOFTWARE INTEGRATES ATFX API 105
The Feature that Utilizes ATFX Reader APl in PA SORtWarecccooeveieieneiinineeeeee, 105
APPENDIX 107
TImMeE DOMAIN STGNAIS ...t 107
THME SEIBAIM ...ttt et e e e e s s e teesteeseesbeenteeneesaeeteeneeaneenseeneenreas 107
THME BIOCK. ...ttt sttt ne e 107
Frequency DOMAIN SIGNAISc.oiiiiiiiiieeeee et 108
Fast Fourier Transform Spectral Analysis Linear (FFT)ccoooiiiiiininiieneneeeeeeees 109
AULO POWET SPECIIUM (APS) ..ottt s re et sbeeste e nne s 112
SPECLIUM TYPES ..ttt b bbbttt e bt e b e b e e nn e 113
Cross POWET SPECIIUM (CPS) ..ottt 117
Frequency Response FUNCLION (FRF)ocviiiciiic et 119
SINE SPECIIUM ...ttt e bbbt b e bt st 122
Shock Response SPECIrUM (SRS) ..o e 124
(@0 [cT a0 T=Tod 1 (U o USSR OTUPSPPOPR 127
OCTAVE SPECIIUM ...ttt h ettt e b b e b e e e nne e 128
Compution of Frequency SPectrum SIgNalSccoviiiiiiiiiieiiee e, 129
LINEAN SPECIIUM ...ttt e et e et e e et e e sb e e st e e s reeeteenneeenrs 129
AULO POWET SPECIIUM ...ttt ettt nne s 130
CrOSS POWEE SPECLIUM ...ttt ettt bttt nb e nn e 131
Frequency ReSPONSE FUNCHIONoouiiiiiiie et e 131
L@ 0 (=T S o 1= od 1 (U] o USRS 133

Page 3 of 139

END USER LICENSE AGREEMENT FOR CRYSTAL INSTRUMENTS SOFTWARE 135

Page 4 of 139

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form, for any purpose, without the written permission of Crystal
Instruments Corporation (“Crystal Instruments”).

By installing, copying or using the Software, the user agrees to be bound by the terms of the
Crystal Instruments End User License Agreement which is a legally binding agreement between
the user (“the Licensee”) and Crystal Instruments for the Crystal Instruments software, which
includes software components, tools, and written documentation (“Software”).

Crystal Instruments makes no warranties on the Software, whether express or implied, nor implied
warranties of merchantability or fitness for a particular purpose. Crystal Instruments does not
warrant your data, that the software will meet your requirements, or that the operation will be
reliable or error free. The Licensee of the Software assumes the entire risk of use of the Software
and the results obtained from the use of the software. Crystal Instruments shall not be liable for
any incidental or consequential damages, including loss of data, lost profits, the cost of cover, or
other special or indirect damages.

Copyright © 2005-2022 Crystal Instruments Corporation. All rights reserved.

All trademarks and registered trademarks used herein are the property of their respective holders.

Page 5 of 139

ATEX Signal Reader API (C#, python, matlab, LabView)

— — mmmmp | ATFX Reader API

Signal / Recording l
ATEX File User Software / Interface
Y :
(X Data-Time [s) ¥ Data-ms
Cl| Data ACq uisition Devices Record Information Signal Basic Information ~ Signal Advanced Info f;;lg:mcl 0.000000E +000 2.666126E.001
Praperty Value " 1.953125E-004 -1 51664264000
Admin) 3.906250E-004 -5, 167476E+000
Record Information Signal Basic Information Signal Advanced Information ~ Signal Data Chann Instruments Sider 5.859375E-004 -1.8750626-001
Block(Ch1] Property Value Testhote Randamss/Run10 Highabortif) 7.812500E-004 -1.815305E 001
Block(Ch2) Name [HighAlarmif}
Blockidrive) UserAnnotation Randamss/Run10 LowABort) 9.765625E-004 -1.832487E-001
APS(Ch1 RecordingPath CAUsErs\KevinCheng\Documen... LowAlarmif) -
s MeasurementType VCS_Random H 1.171875E-003 -1.720906€ -001
APS{drive) Tyoe ODS_ATF_XML
SignalType Time _
mf_‘t“[:;m RecordingTypeName ASAM ODS5 Format - XML Property Value
noise 712022 3.23- ocki
profilein GeneratedTime 3/7/2022 3:23:19 PM Version 10,0830 Hockjrg Randomss
] APS(Ch1]
::g::::;:ﬁ SignalName BlockiCh1) CreateTime 3/7/2022 3:23:19 PM APS:ChZ: testLastSavedTime 3/7/2022 3:23:19 PM
Lowabarti] samplingRate 512Ktz Mastersi 2550576 Aesiarve testiastRunTime 3772022 31200 PM
:alaw”m[ﬁ BlockSize 1024 UserAnnotation Random55/Run10 naiseif) level 1
prafile(
MeasurementType VEs.Random HighAbortif) drivePk 0.385702B66700027
Highalarmif)
LowAbort(l contralRMS 9.74654483795166
Slgnal / RECOrdlng Data :’""]““"""L” targetRMS 9.8128862109375

The Crystal Instruments (CI) ATFX ODS Signal Reader Application Programming Interface
(API) consists of two Windows Dynamic-Linked Libraries (DLL) providing third-party
applications an interface to access the signal data stored in the ASAM Transport Format XML
(ATFX) files.

ATFX files are formatted according to the Association for Standardization of Automation and
Measuring Systems (ASAM) Open Data Services (ODS) standardization. This is a standard
dedicated for storing vibration data and its different forms. CI software natively stores its data
using the ATFX format, for both signals and recordings.

For details about the ATFX ODS format please refer to the official website:

https://www.asam.net/standards/detail/ods/wiki/

ATFX files are xml-based files which store the signal data along with all the attributes of the
signal data including data and time or recording, length of recording, number of channels,
channel parameters (e.g., input channel sensor and sensitivities), geographic coordinates,
sampling rate, high pass filter, etc.

ATFX files also reference a DAT file that are well-defined for storing both raw time data as well
as processed spectral data, calculated from functions including Fourier Transform, Frequency
Response Functions, Cross-Power Spectrum, Octave Spectrum, etc. The .dat file is an important
part of the ATFX file and, if missing, the ATFX API may not properly read the ATFX file.

Page 6 of 139

https://www.asam.net/standards/detail/ods/wiki/

There are two additional file types that the .aftx file references that contain raw data: .ts and .gps.
The .ts file is a TimeStamp recording that contains an accurate measure of when a recording was
saved with accuracy down to nanoseconds. The .gps file is a GPS recording that contains
locational data of where a recording was saved (e.g., latitude, longitude, altitude).

& Open e
+ » This PC » Downloads » gps test example v O R Search gps test example
Organize + New folder e @
* Name - Date modified Type Size
Run10 Mar 07, 2022 15-11-58 5/3/2022 4:21 PM File folder
Run17 Mar 29, 2022 16-14-20 Apr 12, 202... 4/29/2022 500 PM File folder
Saved Files Apr 18, 2022 11-38-22 4M8/2022 11:58 AM File folder
() (44995201 REC_{20220419)(1) - Copy.atfx 4/22/2022 11:31 AM ASAM Transport ... 6T KB
) (4499520)_REC_{20220419)(1).athx 4/18/2022 11:53 AM ASAM Tranzport F... 6T KB
E:I MergedSig.stfx 41842022 11:54 AM ASAM Tranzport F.. 85KB
) Mergedsig?.atfx 4/20/2022 451 PM ASAM Transport F... 103 KB
) RECOO41.atfx 42220221214 PM ASAM Transport F... 95 KB
) REC3838.atfx 4872022 11:50 AM ASAM Transport F... 66 KB
§5 ATFX Reader Demo /
[wsesskevincheng test example REC_[202204191(1) - Copy.atfx 7 |
Recard ian signal Data Channel Takle Merge Info
:-.-.::'..' .I':-i ATFEML Froperty Value
\Recording. Tam: mpRecor
i Unknown Owner [ecite .at0) v
Instruments GRS [o | | Concdl |
Testhote Untitied Test Hote i
Hame 14499520, REC_{2022041801) - C...
RecordingPath CLbsers KewinChang \Downloa...
Type OD5_ATF XML
RecordingTypeName ASAM QDS Format - XML
Version 10.0.8.41
Deviceshs 4499520
MasterSH 4459520
MeaturementType HNone
GP5 Enabded True
Longitude (]
Latitude 37.38045
ARtitude 1242
Manosecands Elapsed 629999338
Time Zone UTC-05:00
Created Time [Localy 411572022 4710 FM
Created Time (UTS) 4B2022 104710 PM

Page 7 of 139

% Open >

+ > ThisPC » Downloads > gpstest example v O Search gps test example
Orgenize v New folder v ™ @
(o Name Dat dified Sze
Run10 Mar 07, 2022 15-11-58 2421 PM File folder

Run17 Mar 29, 2022 16-14-20 Apr 12, 202... 4/29/2022 5:00 PM File folder
Saved Files Apr 18, 2022 11-58-22 41
B) (4499520} REC_{20220419)(1) - Copyts
B (4499520} REC_{20220419)(1).ts
B MergedSig_chl.ts
B MergedSig_ch2.ts
B REC5838ts

R A

85! ATFX Reader Demo

'é\Useré\lﬁevir;tﬁéng\bowﬁload;\qp; ies{ exampléi@&ﬁgiO);REC;izbzzddi§N1) - Cbpy.ﬁ

Record Information Signal Data Information Channel Table Merge Info

EDM.Recording.TimeStampRecor]| | Property Value R
e (7.ts) v
Unknown User 7
1 Cancel

<! Instruments GRS
TestNote Untitled Test Note
Name {4499520)_REC_{20220419)(1} - C...
RecordingPath C:\Users\KevinCheng\Downloa...
Type TimeStamp
RecordingTypeName Time Stamp Format
Version 10.0.8.44
MasterSN 0
MeasurementType None
o Open *
T » ThisPC » Downloads » gps test example » v O Search gps test example
Organize « New folder e | 0
A Name . Date modified Type Size
Run10 Mar 07, 2022 15-11-58 5 der
Run17 Mar 29, 2022 16-14-20 Apr 12, 202... 4 e
Saved Files Apr 18, 2022 11-58-22 de
| RECO041.gps 5 File 1KB
65 ATFX Reader Demo
C\Users\KevinCheng\D gps test example RECO041.gps 4
Recard i Signal Data i Channel Table Merge Info
EDM.Recording. GPsRecording Property Value
Unknown User
Instruments CoCo
Testhote Untitled Test Note

ChUsers\KevinCheng\Downloa...

Mame RECO041
w | | GPSfile (*.gps) ¥
RecordingPath . .

RecordingTypeMName GPS Format
Version 10.0.8.44
MasterSh [}
MeasurementType Mone

The Signal Reader API provides end-users with a streamlined file reading and browsing library
to decode ATFX, TS and GPS files. Users can integrate the API with their own custom
application. Currently, we support Windows-based programs, ideally written in C#. The same
API also supports Python, MatLab and LabView.

The API offer direct calls to the ASAM ODS model classes and objects used to store data saved
in the ATFX file, such as calling the recording NVHMeasurement and NVHEnvironment to read
the DateTime with nano seconds elapsed.

Page 8 of 139

The API also provides a Utility class that has methods to return data from the ATFX file without
the user needing to understand the complexity of the ASAM ODS model classes. Such as the
Utility GetListOfAllSignals that return a list of signals that a ATFX file contains or the Utility
GetChannelTable that return a 2D list of strings, where each list is an input channel row.

It is also possible to read any of the signals, time or frequency, in other engineering units (EU),
such as Acceleration m/s?to g. As well as reading frequency domain signals in other spectrum
types, such as EUrms to EUPeak. All done by the signal method GetFrame where users can pass
in parameters to return a converted signal frame data saved in the ATFX file.

When the ATFX API read the ATFX file, there may be some differences in the signal frame
data, this is due to some display related parameters such as spectrum type not being saved into
the ATFX file. By default, the spectrum type is EUrms?. Engineering units are saved into the
ATFX file and should be the the default EU when reading the signal frame.

Page 9 of 139

ATFX API Package

Package Contents
Crystal Instruments will provide a zip file or software installer exe file that contains the
following:

1. APIDLL files

2. API user interface demo program - An executable file that calls ATFX reader API dlls to
access information stored in Crystal Instruments ATFX files

a. Demo program source code written in C#, Python, LabVIEW and Matlab
3. API technical documents

a. API Class Methods Library

b. API Assembly Documentation

How to Install the ATFX API

Run the installer and it should install the files to the default location:
C:\Program Files\Crystal Instruments\Signal Reader API

It is recommended to move any of the coding files outside of the Program Files folder to avoid
admin permissions when editing and saving. The dll files can be moved anywhere, so long any
custom scripts know the exact file path location of those dll files.

Unreadable DLL Files Despite Correct File Path

Blank CHM File Display Issue

There may be chances where the CHM file displays a blank screen on the right side of the
window or a script reading the correct file path and that the dll files exist but throws an error
stating that it can not find the dll files. One of the solutions is that in the dll file properties have
an additional clickable box or button called Unblock and text saying, “This file came from
another computer and might be blocked to help protect this computer.”. Unblocking the dll file
should let the scripts relying on the dll files to be able to find and read them.

This issue occurs because of the computer protecting itself from any files that came from another
computer, thus it will sometimes mark files as potentially unsafe and block it so it is not
readable.

Page 10 of 139

CLATFX.Reader.dll Properties

General Securty Detalls Previous Versions

CILATFX Reader.dll

computer and might be blocked to
help protect this computer.

Cancel

X

s File Reader API for Cl Measurement Data Class Methods V2....

General Security Details Previous Versions

]

=
Type of file: Application extension (dll) Type offile
Opens with: Unknown application Change... Opens with:
Location: C:\Users\KevinCheng\Desktop\ATFX AP| Package Location:
Size 704 KB (721,408 bytes) Size:
Size on disk: 708 KB (724,992 bytes) Size on disk:
Created: Monday. May 16, 2022, 11:55:53 AM Created:
Modffied: Friday, May 13, 2022, 5:45:17 PM Modified
Accessed: Today, July 1, 2022, 3:01:09 PM Accessed
Attributes: [JReadonly []Hidden Advanced... Attributes:
Security: This file came from another (] Unblock Security:

ler APl for CI Measurement Data Class Methods V2.0.8

Compiled HTML Help file (.chm)

@ Microsofi® HTML Help E Change

Docum

Ci\UsersiJames\OneDrive - Crystal
1.7 MB (1.235,081 bytes)

117 MB (1,236,992 bytes)

Thursday. July 21. 2022, 1:12:26 PM
Tuesday. July 26. 2022, 1:39:03 PM

Today, July 26, 2022, 1:39:04 PM

[JRead-only [Hidden Advanced...
This file came from another computer
and might be blocked to help protect
this computer

[Junblock

Cancel Apply

X

The C# Demo exe file should fine on its own as it has embedded the dll files into the exe file.

Recommended Versions for Python, Matlab & LabVIEW
For the Python and Matlab scripts to work, please edit the scripts and change the file path
location to point to the dil and recording files.

It is recommended to use Matlab version R2021b or later. And a compatible version of Python
for the Python.NET package, such as 3.8 or 2.7. Anything above 3.8 can work by installing a
pre-release version of Python.NET.

The Python scripts also comes with Matplotlib for plotting signal frame data and Numpy for
converting C# array to Python array.

NET.addhssembly ('C

r Crystal Instruments Co

$#---Pythonnet clr import
import clrc
parentPath = "C:\\Users\\Eevi

recordingPath = "C:\\Users\\Ke g%
100 recordingPathRegular = recordingPath + "
1 recordingPathT5 = recordingPath + "{44
recordingPathGPS = recordingPath + "RECOO4

%create a atfx recording instance

rec = EDM.Recording.CDSNVHATFXMLRecording (' C:\Usexrs'\KevinCh

clr.hddReference (parentPath + "CI.AT
clr.hddReference (parentPath + "Cor

For the LabVIEW ATFX API example to work, please use the latest version of LabVIEW, such
as LabVIEW 2021 or 2021 SP1 32-bit version. And use the provided dll files in the LabVIEW
ATFX API Demo -> Private folder.

Page 11 of 139

: LabVIEW ATFX APl Demo » Private

ue Testing * N
i3 -

-

-

Mame

CIATFX.Reader.dll
Commeon.dll
LabVIEWDotNetAPI.dll

2 Search Private

Date modified

5/9/2022 11:33 AM
5/9/2022 11:33 AM
5/9/2022 11:33 AM

Page 12 of 139

Quick Start

This section of the manual will be focused on a quick reference guide to give the user knowledge
of what they need to do. For example, how to read an Auto Power Spectrum signal in C#, Python
and Matlab or read the nano seconds from a recording.

Reading a Frequency Domain Signal Frame

Frequency domain data is read from time domain data that is converted through mathematical
transforms such as the Fourier Transform.

To read a frequency domain signal, the code must utilize the 1Signal.GetFrame(int index,
_SpectrumScalingType spectrumType, string engineeringUnit) to return a signal frame data.
The _SpectrumScalingType and the string format for the engineering units can be found in the
CHM class library file. Any signal can call the GetFrame method and it will return that signal
frame data.

For Real & Imaginary pair spectrum signals, such as Frequency Response Function (FRF), Fast
Fourier Transform (FFT) and Cross Power Spectrum (CPS), the Y data may be double the size of
the X data. This is because the Real & Imaginary pairs are store together in the Y data, thus the
first number of the pair is the Real and the second is the Imaginary.

A frame data example:
Y data frame size: 1024, X data frame size: 512
[0]: Real, [1]: Imaginary, [2]: Real, [3]: Imaginary, ... [N]: Real, [N+1]: Imaginary

It is also necessary to call the 1Signal.GetLabel(int dimension) and ISignal.GetY Label() to get
the signal X, Y and Z data labels. The GetY Label method is the preferred method to get the Y
data label for frequency signals, especially for reading Real & Imaginary pairs from FRF, FFT,
and CPS. As the GetYLabel will return a list of strings, where the first string is the label for the
actual Y data unit and spectrum type, such as (m/s?)? (RMS) or Real (m)/(m/s?). And the second
string is the label for the Imaginary of Y data.

Here is a list of frequency signals, their short form, and examples:
Frequency Domain Full Name EDM/ATFX Signal Example

Abbreviation
Auto Power Spectrum APS APS(Ch#) HighAbort(f)
APS(drive) HighAlarm(f)
control(f) LowAbort(f)
noise(f) LowAlarm(f)
profile(f)
Frequency Response Function FRF FRF(Ch#, Ch$)

Page 13 of 139

H H(Ch#, Ch$)

H(f)
hinv(f)
Fast Fourier Transform FFT FFT(Ch#)
Cross Power Spectrum CPS CPS(Ch#, Ch$)
Coherence Function COH COH(Ch#, Ch$)
Sine Spectrum Spectrum Spectrum(Ch#)
Shock Response Spectrum MaxiSRS MaxiSRS(Ch#)
PosSRS PosSRS(Ch#)
NegSRS NegSRS(Ch#)
Order Spectrum ORDSpec ORDSpec(Ch#)
Octave Spectrum OCT OCT(Ch#)

C# Code

using System;

using System.Collections.Generic;
using System.IO;

using System.Text;

using System.Reflection;
using System.Diagnostics;

// DLL file imports

using EDM.RecordingInterface;
using EDM.Recording;

using ASAM.ODS.NVH;

using Common;

using Common.Spider;

using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘APS(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'APS(Ch4)').First();

// Get the signal frame data through the ISignal.GetFrame(int, _SpectrumScalingType,
string)

double[][] frame = signalCh4.GetFrame(@, _SpectrumScalingType.EURMS2,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);

// Get the X & Y data labels

string xDatalabel = signalCh4.GetLabel(9);
string yDatalabel = signalCh4.GetYLabel()[©O];
string zDatalabel;

Page 14 of 139

// Get the Z data label if it exists
if(frame.Length == 3)
zDatalLabel = signalCh4.GetLabel(2);

// Get the 2nd Y data label is the signal if FRF, FFT, H or CPS

if(signalCh4.Type == SignalType.Frequency && signalCh4.Name != "H(f)" &&
(signalCh4.Properties.NvhType == _NVHType.FrequencyResponseSpectrum | |
signalCh4.Properties.NvhType == NVHType.CrosspowerSpectrum ||
signalCh4.Properties.NvhType == _NVHType.ComplexSpectrum))

{
string yDatalabel2 = signalCh4.GetYLabel()[1];
}
¥ Data-Frequency (Hz) ¥ Data- (m/s%)° (RMS5)

_ 1.22851834021276E-05
25 3.079994712607E-06
50 1.33338728947052E-09
75 1.20776244560972E-09
100 1.259142345094404E-09
125 1.06968833790685E-09
150 1.2482976874395E-09
175 8.62062643491368E-10
200 5.16639009351394E-10
225 3.67680913493373E-10
250 4,44786429900527E-10
275 3.22440480974074E-10

Python Code

#---Pythonnet clr import

import clr

Change file path here to whereever the DLL files are

parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.d11")
clr.AddReference('System.Ling")
clr.AddReference('System.Collections")

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dll imports
from EDM.Recording import *

from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

from EDM.Utils import *

from Common import *

from Common import _SpectrumScalingType
from Common.Spider import *

from System import *

from System.Diagnostics import *
from System.Reflection import *

from System.Text import *

from System.IO import *

Page 15 of 139

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"

ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording

recordingPathRegular = recordingPath + "SIGO00O.atfx"

#OpenRecording(string, out IRecording)

dummy data is required for the OpenRecording for it to correctly output data

Make sure to reference the correct file string

dummyTestl, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Get a list of signals
signallist = Utility.GetListOfAllSignals(recording)

Get the frame of a frequency signal depending on where it is in the list

The Convert.ToInt32 is necessary for the the enum AccelerationUnitType to be read as
a int instead of a string

signal = signallist[12]

frame = signal.GetFrame(@, _SpectrumScalingType.EUPeak,
AccelerationUnitEnumString.ArrayString[Convert.ToInt32(AccelerationUnitType.g)])

print("X: ", frame[0][@Q])
print("Y: ", frame[1][0])
print("X: ", frame[0][1])
print("Y: ", frame[1][1])
print("X: ", frame[0][2])
print("Y: ", frame[1][2])

frameX = np.fromiter(frame[@], float)
frameY = np.fromiter(frame[1], float)

plt.plot(frameX, frameY,'r")

plt.xlabel(signal.Properties.xQuantity + " (" + signal.Properties.xUnit +
plt.ylabel(signal.Properties.yQuantity + " (" + signal.Properties.yUnit +
plt.title("Plot of the " + signal.Name)

plt.legend(signal.Name)

plt.show()

")
"))

728559615451e-12

5783e-11

621415745173e-11

Page 16 of 139

i Figure 1 — m} ke

le—o Plot of the APS(Ch2)
1.0+ — A

0.8 1

Velocity ()
o
o

o
S

0.2 4

0.0 4

T T T T T T T
0 2000 4000 6000 8000 10000 12000
Frequency (Fregquency (Hz))

&€ $|Q|E

Matlab Code

% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

% Create a atfx recording instance

rec =

EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul @1, 2022 11-20-16\SIGOOO4.atfx");

% Use item function to get a time signal instance
sig = Item(rec.Signals,9);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{@}",sig.Properties.xUnit));
disp(System.String.Format("Y Unit:{@}",sig.Properties.yUnit));

% Assign the engineering unit

engiUnit =
EDM.RecordingInterface.AccelerationUnitEnumString.ArrayString(System.Convert.ToInt3
2(EDM.RecordingInterface.AccelerationUnitType.g)+1);

disp(engiUnit);

disp("display signal frame data");

% Get signal frame

frame = sig.GetFrame(@, Common.(' SpectrumScalingType').EURMS2, engiUnit);
% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);

% Long format, showing more decimal places
format long;

% Display the cell(frame) content
%celldisp(matFrame);

% Convert back to mat array

xVals = cell2mat(matFrame(1));

Page 17 of 139

yValues = cell2mat(matFrame(2));

%plot the signal

plot(xVals,yValues, 'r');

xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");
title("Plot of the "+string(sig.Name));

legend(string(sig.Name));

Name : APS (C;lj

X Unit:Hz

Y Unit:im/s*

g

display signal frame data

4 Figure 1 - o X
File Edit View Inset Tools Desktop Window Help ~

Dods |20 E

<100 Plot of the APS(Ch1)
2

APS(Ch1)
1.8

(g* (RMS))
5 s &

Acceleration (g {

o o

o -] -
———

W IM\ Lrl o,

0 1000 1500 ZDDD 2500 3000
Frequency (Hz

o o
[
——
Y

o

Reading a Time Domain Signal Frame

Time domain data is read from live monitoring of systems and signals in a test over a period of
time.

To read a time domain signal, the code must utilize the I1Signal.GetFrame(int index,
SpectrumScalingType spectrumType, string engineeringUnit) to return a signal frame data.
While the _SpectrumScalingType is unnecessary for a time domain signal, passing it in the
method will not affect the returned frame data. The method offers a parameter to pass in an
engineering unit to change the returned frame data. The string format for the engineering units
can be found in the CHM class library file. Any signal can call the GetFrame method and it will
return that signal frame data.

It is also necessary to call the 1Signal.GetLabel(int dimension) to get the signal X, Y and Z
data labels. The ISignal.GetY Label() can also get the Y data label by referring to the first string
in the returned list of strings.

Here is a list of frequency signals, their short form, and examples:

Page 18 of 139

Time Domain Full Name EDM /ATEFX Signal Example

Abbreviation

Time Block Block Block(Ch#)
NonEquidistant Block(drive)
control(t)
noise(t)
profile(t)
C# Code

using System;

using System.Collections.Generic;
using System.IO;

using System.Text;

using System.Reflection;
using System.Diagnostics;

// DLL file imports

using EDM.RecordingInterface;
using EDM.Recording;

using ASAM.ODS.NVH;

using Common;

using Common.Spider;

using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig@e@l.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)").First();

// Get the signal frame data through the ISignal.GetFrame(int, _SpectrumScalingType,
string)

double[][] frame = signalCh4.GetFrame(@, _SpectrumScalingType.Unknown,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);

// Get the X & Y data labels

string xDatalLabel = signalCh4.GetLabel(9);
string yDatalabel = signalCh4.GetLabel(1);
string yDatalabelAlt = signalCh4.GetYLabel()[©0];
string zDatalabel;

// Get the Z data label if it exists
if(frame.Length == 3)
zDatalabel = signalCh4.GetLabel(2);

Page 19 of 139

X Data-Time (s) ¥ Data-m/s*
-3.83868312835693
0.000195312502910383 -3.18519496917725
0.000390625005820766 2.56844139099121

0.000585937508731149 4,77544021606445

0.000731250011641532 2.94711685180664

0.000976562514551915 2.0478687286377
0.0011718750174623 2.36961460113525
0.00136718752037268 1.12222909927368
0.00156250002328306 -0.055780217051506
0.00175781252619345 2.56172704656655
0.00195312502910383 -0.216037526726723
0.00214843753201421 -3.89411163330078
0.0023437500349246 0.99606454372406
0.00253906253783498 0.984960794448853

0.00273437504074536 -2.72559452056885

Python Code

#---Pythonnet clr import

import clr

Change file path here to whereever the DLL files are

parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.d11")
clr.AddReference('System.Ling")
clr.AddReference('System.Collections')

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dl1l imports
from EDM.Recording import *

from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

from EDM.Utils import *

from Common import *

from Common import _SpectrumScalingType
from Common.Spider import *

from System import *

from System.Diagnostics import *
from System.Reflection import *

from System.Text import *

from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"

ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording

recordingPathRegular = recordingPath + "SIGO©0O.atfx"

#0penRecording(string, out IRecording)

dummy data is required for the OpenRecording for it to correctly output data

Make sure to reference the correct file string

dummyTestl, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Page 20 of 139

Get a list of signals
signallist = Utility.GetListOfAllSignals(recording)

Get the frame of a frequency signal depending on where it is in the list

The Convert.ToInt32 is necessary for the the enum AccelerationUnitType to be read as
a int instead of a string

signal = signallist[4]

frame = signal.GetFrame(@, _SpectrumScalingType.Unknown,
AccelerationUnitEnumString.ArrayString[Convert.ToInt32(AccelerationUnitType.g)])

print("X: ", frame[@][@])
print("Y: ", frame[1][0])
print("X: ", frame[0][1])
print("Y: ", frame[1][1])
print("X: ", frame[0][2])
print("Y: ", frame[1][2])

frameX = np.fromiter(frame[@], float)
frameY = np.fromiter(frame[1l], float)

plt.plot(frameX,frameY, ' 'r")

plt.xlabel(signal.Properties.xQuantity + " (" + signal.Properties.xUnit + ")")
plt.ylabel(signal.Properties.yQuantity + " (" + signal.Properties.yUnit + ")")
plt.title("Plot of the " + signal.Name)

plt.legend(signal.Name)

plt.show()
1 Figure 1 - O x
le—8 Plot of the Block(Ch2)
— B
1.0 4
0.5 1
=
G 0.04
i}
E
-05
-1.0
154
0.000 0.005 0.010 0015 0.020 0.025 0030 0.035 0.040
Time (Time (s))
& +Ql=
Matlab Code

% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dl1l");

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

Page 21 of 139

% Create a atfx recording instance

rec =

EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul @1, 2022 11-20-16\SIGOOO4.atfx");

% Use item function to get a time signal instance
sig = Item(rec.Signals,0);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{@}",sig.Properties.xuUnit));
disp(System.String.Format("Y Unit:{@}",sig.Properties.yuUnit));

disp("display signal frame data");

% Get signal frame

frame = sig.GetFrame(0);

% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);

% Long format, showing more decimal places
format long;

% Display the cell(frame) content
%celldisp(matFrame);

% Convert back to mat array

xVals = cell2mat(matFrame(1l));

yValues = cell2mat(matFrame(2));

%plot the signal

plot(xVals,yValues, 'r');

xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");
title("Plot of the "+string(sig.Name));

legend(string(sig.Name));

Name :Block (Chl)
X Unic:3
Y Unit:m/s*®

display signal frame data

Page 22 of 139

4 Figure 1 -] x

File Edit View Insert Tools Desktop Window Help k]

Nede |3 08| kE

Plot of the Block(Ch1)

i

8
0 002 004 006 008 01 012 014 016 018 02
Time (S)

8

&l

4

=]

————

a

Acceleration (m/s?)
[=]

N

&

Extracting the Date and Time of a Recording

A recording stores Time and Date in a header file that indicates when the recording was created
and saved. For the ATFX file, it stores this information in a DateTime object with accuracy up to
millisecond. Sometimes this accuracy is not enough, thus a new data object is created with the
purpose of storing better accuracy up to nanoseconds known as DateTimeNano. The
DateTimeNano object has a property that stores the millisecond, microsecond and nanosecond
together that can be retrieved and separated into each time unit. A .ts file stores the
DateTimeNano object that the ATFX file references.

To extract and read the time data that a recording has, users will have to import and use the
DateTimeNano object, which is an extension of the DateTime that includes nanosecond data.

To use the DateTimeNano class, users will need to import Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those
are referenced in the link below:

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Name Type Descriptions
IsNanoTime ~ DateTime Gets whether nanoseconds exists / not
equal to zero
TotalNanoSeconds int Get TotalSeconds in Nano Seconds
ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time
and nanosecond time

Page 23 of 139

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Milisecond.Microsecond.Nanosecond
000/000/000

C# Code
The following code snippet shows how to extract, create and display the DateTimeNano object
properties.

using System;

using System.Collections.Generic;
using System.IO;

using System.Text;

using System.Reflection;
using System.Diagnostics;

// DLL file imports

using EDM.RecordingInterface;
using EDM.Recording;

using ASAM.ODS.NVH;

using Common;

using Common.Spider;

using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig@e@l.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

if (rec is ODSNVHATFXMLRecording nvhRec)
{

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeLocal = new DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);

DateTimeNano createTimeUTC = new
DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null),
nvhMeasurement.NanoSecondElapsed);

bool isNanoTime = createTimeUTC.IsNanoTime;

uint milli_micro_nano = createTimeUTC.ms_us_ns;

ulong totalNanoSeconds = createTimeUTC.TotalNanoSeconds;
string nanoString = createTimeUTC.ToNanoString();

int ms (int) (createTimeUTC.ms_us_ns / 1e6);

int us = (int)(createTimeUTC.ms_us_ns / 1le3 % 1le3);

int ns = (int)(createTimeUTC.ms_us_ns % 1e3);

// Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns

string customFormat = string.Format("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}",
createTimeUTC.Year, createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour,
createTimeUTC.Minute, createTimeUTC.Second, ms, us, ns);

}

Page 24 of 139

Python Code

Value

| Property

2022
Month 4
Day 18
Haour 22
Minute 47
Second 10
Millisecond o
IsManaTime True
ManoSeconds 629999338
TotalManosec B82030629999333
Date Time 4/18/2022 10:47:10 PM
TimeOfDay 22:47:10
ToManaString() 4/18/2022 10:47:10 PM.629,999,338
Custom Format: yyyy/mm/dd/hh... | 2022/4/18/22/47/10,/629,/999/338

#---Pythonnet clr import

import clr

Change file path here to whereever the DLL files are

parentPath =

"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.d11")
clr.AddReference('System.Ling")
clr.AddReference('System.Collections")

#---C# .NET imports & dl1l imports
from EDM.Recording import *

from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

from EDM.Utils import *

from Common import *

from Common import _SpectrumScalingType
from Common.Spider import *

from System import *

from System.Diagnostics import *
from System.Reflection import *
from System.Text import *

from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in

RecordingManager.Manager.OpenRecording
recordingPathRegular = recordingPath + "SIGO©0O.atfx"

#O0penRecording(string, out IRecording)

dummy data is required for the OpenRecording for it to correctly output data

Make sure to reference the correct file string

dummyTestl, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,

None)

Create ODS NVH ATFXML Recording object that contains NVH Measurement & NVH

Environment using the file path

Page 25 of 139

recording = ODSNVHATFXMLRecording(recordingPathRegular)

If the above created object is ODSNVHATFXMLRecording, it should be able to get the
NVH Measurement & NVH Environment and assigned them
if type(recording) is ODSNVHATFXMLRecording:

nvhRec = recording

nvhMeasurement = nvhRec.Measurement

Create DateTimeNano objects for local and UTC time zones

createTimelLocal = DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed)

createTimeUTC = DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime,
None), nvhMeasurement.NanoSecondElapsed)

print("Printing UTC")
print(createTimeUTC.IsNanoTime)
print(createTimeUTC.ms_us_ns)
print(createTimeUTC.TotalNanoSeconds)
print(createTimeUTC.ToNanoString())

ms = createTimeUTC.ms_us_ns / 1le6

us = createTimeUTC.ms_us_ns / 1e3 % 1e3

ns = createTimeUTC.ms_us_ns % 1le3

Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns

print("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}" .format(createTimeUTC. Year,
createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour, createTimeUTC.Minute,
createTimeUTC.Second, ms, us, ns))

print("\nPrinting local™)
print(createTimeLocal.IsNanoTime)
print(createTimelLocal.ms_us_ns)
print(createTimeLocal.TotalNanoSeconds)
print(createTimeLocal.ToNanoString())

ms = createTimeUTC.ms_us_ns / 1le6

us = createTimeUTC.ms_us_ns / 1e3 % 1e3

ns = createTimeUTC.ms_us_ns % 1le3

Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns

print("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}" .format(createTimeLocal.Year,
createTimeLocal.Month, createTimelLocal.Day, createTimelLocal.Hour,
createTimelocal.Minute, createTimelLocal.Second, ms, us, ns))

Printing UTC

Page 26 of 139

Matlab Code

% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll");
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll");

% Create a atfx recording instance
rec = EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Downloads\gps test
example\{4499520} REC_{20220419}(1).atfx");

% Assign the NVH Measurement and NVH Environment
nvhMeasurement = rec.Measurement;

% Create the DateTimeNano in UTC and or Local

createTimelLocal = Common.DateTimeNano(rec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);

createTimeUTC =

Common .DateTimeNano(Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, []),
nvhMeasurement.NanoSecondElapsed);

% Display nano type properties
disp('Printing UTC");
disp(createTimeUTC.IsNanoTime);
disp(createTimeUTC.ms_us_ns);
disp(createTimeUTC.TotalNanoSeconds);
disp(createTimeUTC.ToNanoString());

ms = (createTimeUTC.ms_us_ns - rem(createTimeUTC.ms_us ns, 1le6)) / 1le6;
us = rem(createTimeUTC.ms_us_ns / 1le3, 1le3);
ns = rem(createTimeUTC.ms_us_ns, 1le3);

% Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns

str = sprintf('%d/%d/%d/%d/%d/%d/%d/%d/%d"', createTimeUTC.Year,
createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour, createTimeUTC.Minute,
createTimeUTC.Second, ms, us, ns);

disp(str);

% Display nano type properties
disp('Printing local');
disp(createTimelLocal.IsNanoTime);
disp(createTimelLocal.ms_us_ns);
disp(createTimelLocal.TotalNanoSeconds);
disp(createTimeLocal.ToNanoString());

ms = (createTimelLocal.ms_us_ns - rem(createTimelLocal.ms_us_ns, 1e6)) / le6;
us = rem(createTimelLocal.ms_us_ns / le3, 1le3);
ns = rem(createTimeLocal.ms_us_ns, 1le3);

% Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns

str = sprintf('%d/%d/%d/%d/%d/%d/%d/%d/%d"', createTimelLocal.Year,
createTimelLocal.Month, createTimelLocal.Day, createTimelocal.Hour,
createTimelLocal.Minute, createTimelLocal.Second, ms, us, ns);
disp(str);

Page 27 of 139

Printing UIC
1

629959338

BTE30629999338
4/18/2022 €:47:10 PM.629.995,338
2022/4/18/18/47/10/629/999/338
Printing local

1

629959338

53230629999338

4/18/2022 2:47:10 PM.6€29.999.338

2022/4/18/14/47/10/629/999/338

Reading GPS Data from a ATFX File

A recording recorded in a device that can record GPS data such as the Crystal Instruments
Ground Recording System (CI-GRS) can save location data into a .gps file that the ATFX file
references.

To read the GPS data, it is extracted from the IRecording object as a
ODSNVHATFXMLRecording object and locating the Measurement and Environment
property. These properties are AoMeasurement and AoEnvironment, which can be converted
into NVHMeasurement and NVHEnNvironment.

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

In order to use NVHMeasurement and NVHEnvironment, users must import ASAM.ODS.NVH,;
using ASAM.ODS.NVH;

Here are the NVHMeasurement Class properties:

Name Type

Altitude double
GPSEnabled bool

Latitude double
Longitude double

Page 28 of 139

MeasurementBegin DateTime
MeasurementEnd DateTime
NanoSecondElapsed int

Here are the NVHEnNvironment Class properties:

Name Type ‘
FirmwareVersion string
InstruSoftwareVersion string
HardwareVersion string
BitwareVersion string
TimeZone string

Here are the AoEnvironment Class methods:

Name Return Type Descriptions

GetLocalTime(DateTime) DateTime Get time in local format

GetUTCTime(DateTime) DateTime Get time in UTC format
C# Code

The code snippet below shows the extraction of GPS related data.

using System;

using System.Collections.Generic;
using System.IO;

using System.Text;

using System.Reflection;
using System.Diagnostics;

// DLL file imports

using EDM.RecordingInterface;
using EDM.Recording;

using ASAM.ODS.NVH;

using Common;

using Common.Spider;

using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

if (rec is ODSNVHATFXMLRecording nvhRec)

{

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

Page 29 of 139

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

bool bGPS = nvhMeasurement.GPSEnabled;
double 1lng;

double lat;

double alt;

double nano;

string timeZone;

string softwareVer;

string hardwareVer;

string firmwareVer;

string bitVer;

if (bGPS)
{

1ng = nvhMeasurement.Longitude;

lat = nvhMeasurement.Latitude;

alt = nvhMeasurement.Altitude;

nano = nvhMeasurement.NanoSecondElapsed;
¥
if (!String.IsNullOrEmpty(nvhEnvironment.TimeZone))
{

timeZone = nvhEnvironment.TimeZone;
¥

DateTime creaTimelLocal = nvhRec.RecordingProperty.CreateTime;
DateTime creaTimeUTC = Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null);

if (!String.IsNullOrEmpty(nvhEnvironment.InstruSoftwareVersion))
{
softwareVer = nvhEnvironment.InstruSoftwareVersion;
hardwareVer = nvhEnvironment.HardwareVersion;
firmwareVer = nvhEnvironment.FirmwareVersion;
bitVer = nvhEnvironment.BitVersion;

Page 30 of 139

Property Walue
Unknown Owner

Instruments GRS
TestMote Untitled Test Note
Name {4499520]_REC_{20220419}(1) - C...
RecordingPath Ch\Users\KevinCheng\Downloa..,
Type OD5_ATF_XML
RecordingTypeMame ASAM ODS Format - XML
Version 10.0.8.41
DeviceSMs 44559520
Mastersh 44559520
MeasurementType Mone
GPS Enabled True
Longitude o
Latitude 37.38046
Altitude 1242
Manoseconds Elapsed 629999338
Time Zone UTC-05:00
Created Time [Local) 4/18/2022 6:47:10 PM
Created Time [UTC) 4/18/2022 10:47:10 PM
Python Code
#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =

"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.d11")
clr.AddReference('System.Ling")
clr.AddReference('System.Collections"')

#---C# .NET imports & dl1 imports
from EDM.Recording import *

from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

from EDM.Utils import *

from Common import *

from Common import _SpectrumScalingType
from Common.Spider import *

from System import *

from System.Diagnostics import *
from System.Reflection import *

from System.Text import *

from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"

ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording

recordingPathRegular = recordingPath + "SIGO©EO.atfx"

#O0penRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string

Page 31 of 139

dummyTestl, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Create ODS NVH ATFXML Recording object that contains NVH Measurement & NVH
Environment using the file path
recording = ODSNVHATFXMLRecording(recordingPathRegular)

If the above created object is ODSNVHATFXMLRecording, it should be able to get the
NVH Measurement & NVH Environment and assigned them
if type(recording) is ODSNVHATFXMLRecording:
nvhRec = recording
nvhMeasurement = nvhRec.Measurement
nvhEnvironment = nvhRec.Environment
bGPS = nvhMeasurement.GPSEnabled
if bGPS:
print("GPS Enabled: ", bGPS)
print("Longitude: ", nvhMeasurement.Longitude)
print("Latitude: ", nvhMeasurement.Latitude)
print("Altitude: ", nvhMeasurement.Altitude)
print("Nanoseconds Elapsed: ", nvhMeasurement.NanoSecondElapsed)

if not String.IsNullOrEmpty(nvhEnvironment.TimeZoneString):
print("Time Zone: ", nvhEnvironment.TimeZoneString)

print("Created Time (Local): ", nvhRec.RecordingProperty.CreateTime)

print("Created Time (UTC): ", Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime,
None))

dateTimeNano = DateTimeNano(nvhRec.RecordingProperty.CreateTime,
UInt32(nvhMeasurement.NanoSecondElapsed))

print("DateTimeNano Object: ", dateTimeNano)

GPS Enabled: True

Nanoseconds Elapsed: 62

Time Zone: Eastern Standard Time;-38@;(UTC-85:8@) Eastern Time anada) ;Eastern Standard Time;Eastern Daylight Time;[@1:e1:eee1;12
686,60;[0;02:00:00;4;1; HI:R 3 8;5;8;];][e1:01:2007;1 ;60;[8;02:00:00;3;2;0;];[@;02:00:00;11;1;8;]1;];

Created Time (Loc 18 PM

Created Time (UT 6:47:18 PM

DateTimeNano Object 7:18 PM.629.9

Matlab Code
% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dl1l");
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

% Create a atfx recording instance
rec = EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Downloads\gps test
example\{4499520} REC_{20220419}(1).atfx");

% Display gps properties

disp(System.String.Format("GPS Enable:{0}",rec.Measurement.GPSEnabled));
disp(System.String.Format("Longitude:{0}",rec.Measurement.Longitude));
disp(System.String.Format("Latitude:{0}",rec.Measurement.Latitude));

Page 32 of 139

disp(System.String.Format("Altitude:{0}",rec.Measurement.Altitude));

disp(System.String.Format("Time zone:{0}",rec.Environment.TimeZoneString));

disp(System.String.Format("Created Time
(Local):{@}",rec.RecordingProperty.CreateTime));
disp(System.String.Format("Created Time (UTC):{@}",
Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, [])));
disp(System.String.Format("Nanoseconds
Elapsed:{0}",rec.Measurement.NanoSecondElapsed));

GPS Enable:True

Longitude:0

Latitude:37.38046

Altitude:12.42

Time zone:Eastern Standard Time;-300; (UTC-05:00) Eastern Time (US & Canada):;Eastern Standard Time;Ea
Created Time (Local):4/18/2022 2:47:10 PM

Created Time (UTC):4/18/2022 &€:47:10 PM

Page 33 of 139

ATEX API C# Code Examples

The following sections are examples from our Cl ATFX Reader C# Demo Program to help users
understand how to utilize our API class methods. Some of the code snippets have been shortened
compared to the actual Demo Program to provide a more concise explanation. These code
samples can be used to quickstart custom software integration with the ATFX API.

There are 3 file types that the ATFX API can open: .atfx, .ts and .gps. The .atfx is the header file
that references .dat, which contains all of the signal frame data and other data not referenced in
the .atfx file. It can also reference .ts and .gps files. The .dat file is an important part of the ATFX
file and if it is missing the ATFX API may not be able to properly read the ATFX file.

There may be a chance that the data displayed in the ATFX API is different from what is
displayed on EDM. This is due to the spectrum type being a display parameter and not saved in
the ATFX file, thus it will default to EUrms?.

The demo should load the initial saved engineering units when reading any of the signal frame
data.

Building the C# Demo

When opening the C# demo csproj file in Visual Studio, there may be issues that come up such
as missing component reference warnings or an error about a missing package file.

This project references NuGet package(s) that are missing on this computer. Use NuGet Package
Restore to download them. For more information, see http://go.microsoft.com/fwlink/? CLATFX.Reader.Demo
LinklD=322105. The missing file is .\.\.\packages\Fody.2.0.0\build\netstandard 1.4\Fody.targets.

The referenced component 'Costura’ could not be found. CLATFX.Reader.Demo
The referenced component 'EDM.Common’ could not be found. CLATFX.Reader.Demo
The referenced component 'CILATFX.Reader' could not be found. CLATFX Reader.Demo
The referenced component 'System.Data’ could not be found. CLATFX Reader.Demo
The referenced component 'System.Xml' could not be found. CLATFX.Reader.Demo
The referenced component 'System.Drawing' could not be found. CLATFX.Reader.Demo
The referenced component "System.Windows.Forms' could not be found. CLATFX.Reader.Demo
The referenced component "System’ could not be found. CLATFX.Reader.Demo
The referenced component 'Microsoft.CSharp' could not be found. CLATFX.Reader.Demo
The referenced component 'System.Data.DataSetExtensions' could not be found. CI.ATFX.Reader.Demo

The referenced component "System.Xml.Ling' could not be found. CLATFX.Reader.Demo

The referenced component 'System.Deployment’ could not be found. CLATFX.Reader.Demo

PP ®

The referenced component 'System.Core' could not be found. CL.ATFX.Reader.Demo

First, open the csproj file in notepad, locate the target block code and remove it. It should be near
the bottom of the file.

<Target Name="EnsureNuGetPackageBuildimports" BeforeTargets="PrepareForBuild">
<PropertyGroup>

<ErrorText>This project references NuGet package(s) that are missing on this computer.
Use NuGet Package Restore to download them. For more information, see
http://go.microsoft.com/fwlink/?LinkID=322105. The missing file is {0}.</ErrorText>

Page 34 of 139

</PropertyGroup>

<Error Condition="TExists("..\..\..\packages\Fody.2.0.0\build\netstandard1.4\Fody.targets’)"
Text="$([System.String]::Format('$(ErrorText)’,

"..\..\.\packages\Fody.2.0.0\build\netstandard1.4\Fody.targets’))" />

<Error

Condition="1Exists("..\..\..\packages\Costura.Fody.1.6.2\build\dotnet\Costura.Fody.targets’)"
Text="$([System.String]::Format('$(ErrorText)',

"..\..\..\packages\Costura.Fody.1.6.2\build\dotnet\Costura.Fody.targets'))" />
</Target>

Save the file and reload the visual studio when the prompt comes up.
The system related components should be fixed:

=1 Solution 'CLATFX.Reader.Demo’ (1 of 1 project)
CLATFX.Reader.Demo

onnected Services

em.Core
em.Data
em.Data.DataSetExtensions

em.Xml.Ling

Save the solution file where the csproj file is located then right click the solution or project file in
Visual Studio Solution Explorer -> Manage Nuget Packages.

Selution Explorer #
S| =
Srran e A (s P~ 4 General
1 Solution 'CLATFX Reader.Demo’ {1 of 1 project)
4 LATFX.Reader.Demo 1% Build Solution

% Connected Services

Analyze and Code Cleanup
Batch Build...
Configuration Manager...

‘B Manage NuGet Packages for Solution...

[Restore NuGet Packages

Page 35 of 139

MuGet - Solution® &

Updates 2 Consolidate

P0G D Include prerelease

Costura.Fody n MacFarland

“S® Fody add-in for embe: ding references as res

':0 Fody by Simon Cropp
“S® Extensible tool f ing .net assemblies.

Uninstall the Costura.Fody v1.6.2 and Fody v2.0.0 packages and reinstall in them to fix the
Costura component reference. Overwrite if necessary.

These packages are used to embed the CI.ATFX.Reader.dll and Common.dll files to the exe file
during build.

Then for the final components, remove them and reference the CI.LATFX.Reader.dll and
Common.dll files in the ATFX API Package bin folder.

ader.Demoa’ (1 of 1 project)
CILATFX.Reader.Demo

m.Core
em.Data
m.Data.DataSetExtensions

Build started...
1> - Build started: Project: CI.ATFX.Reader.Demo, Configuration: Debug Any CPU -
Fody: Fody (version 2.0.0.0) Executing
Fody/Costu No reference to stura.dll’' found. References not modified.
Fody/Costu Embedding ' F Files\Crystal Instruments\signal Reader API\bin\CI.ATFX.Reader.dll"'
Fody/Costt Embedding 'C: o iles ystal Instruments\Signal Reader API\bin\Common.dll"'
Fody: Finished Fody 655ms.
Fody: Skipped verifying assembly since it is disabled in configuration
Fody: Finished verification in 2ms.
CI.ATFX.Reader.Demo -> C s\KevinCheng\Downloads\ATFX API Package v1.4\ATFXReaderDemo\bin\Debug\CI.ATFX.Reader.Demo.exe
Build: 1 succeeded, @ failed, @ up-to-date, @ skipped == =

Page 36 of 139

Importing and Referencing C# DLL Files

The C# Demo code has a Visual Studio project that can be opened to see how the C# DLL files
are referenced in the project. The C# DLL files can be directly referenced into the project by
right clicking References -> Add References -> Browse in Reference Manager window ->
Locating the DLL files in ATFX API Package\bin folder.

i Referen

) Ference
erence...

\nal

eference...

ected Services

b Proj Name:
b Shared Projects ; v (MQIT:;;:H!
¥ v reaf y:
b coMm MQTTnet
File Version:
4 Browse 1000

Recent

Select the files to reference...
i <« UtilityMode » Other » ATFXReaderDemo » v o Search packages
Organize v New folder = .

2% Dropbox (Team Ci)
Costura.Fody.1.6.2
Fody.2.0.0 20/2022
[This PC | CLATFX.Reader.dll 20/2022 11:34 AM ’
1 30D Objects Common.dll 2022 11:34 AM Applicats

@ OneDrive - Personal

After the C# DLL files have been referenced in the C# Demo, the ATFX API namespace can be
imported to use the various classes and properties.

Page 37 of 139

Below are several imports from the ATFX API that are used in the C# Demo code:

using EDM.RecordingInterface;
using EDM.Recording;

using ASAM.ODS.NVH;

using Common;

using Common.Spider;

using EDM.Utils;

The C# Demo project also comes with the Fody/Costura package that embeds any referenced dll
files into the buildable exe file.

Opening a ATFX File — Start Here
To open an ATFX file, use the RecordingManager Class to call OpenRecording, which takes
in a filename and outputs a IRecording object:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

What is a Recording vs. Signal?
In our API, the IRecording object represents the ATFX file, and contains a list of 1Signal
objects. Each ISignal corresponds to a given channel and measurement method.

Concept Class Type Example
ATFEX file record <IRecording> “C:\Sig001.atfx”
- Properties <RecordingProperty>
- Signals List<ISignal>
o Signals[0] | <ISignal> Block(Chl)
o Signals[1] | <ISignal> Block(Ch2)
o Signals[2] | <ISignal> APS(Ch1)
o Signals[3] | <ISignal> APS(Ch2)
O

For instance, in the example above, the first Signal stored in the ATFX file corresponds to a
segment of Time Domain data acquired from Channel 1.

Note: in CI terminology, “Block” refers to a contiguous segment of time domain data (usually
collected with sample size that is a power of 2), and “APS” refers to a contiguous segment of

Page 38 of 139

frequency domain data (usually calculated via FFT of a time block). These are the two most
common types of signals in our software.

The example code below shows using the IRecording.Signals property to get a list of signals
from a given ATFX record:

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

In addition, the IRecording object also supports the following properties:

Name Type Descriptions ‘

Item ISignal Returns the I1Signal object at a specified
index

RecordingProperty RecordingProperty Returns a RecordingProperty object with
metadata (ex: CreateTime, Serial Numbers,
etc.)

SignalCount int Returns number of ISignal objects

Signals List<ISignal> This is where the actual data lives. Returns a

list of 1Signal objects

Finding the Signal for a particular channel
Once you have a list of signals, you will want to query the 1Signal.Name of the signal to find the
channel and measurement type you are looking for.

For instance, if you want the time block for channel 4, then you want to look for the signal with
the name “Block(Ch4)”

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)").First();

What is a Frame?

A Frame is a double[][] array inside the ISignal object, that contains the numerical data (x-
values, y-values) that you want to acquire. Most of the time, a Signal only has one Frame, but in
the case of waterfall plots or 3D plots, there may be multiple frames.

Concept Class Type Example

Page 39 of 139

Signal <ISignal> Block(Chl)
- Frame <double[][]> Signal.GetFrame(0)
o Frame[0] <double[]> Array of x-values
o Frame[1] <double[]> Array of y-values
o Frame[2] <double[]> Array of z-values
(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,
and (if applicable) the third array is the z-values.

The Frame size (int) is stored in the 1Signal.FrameSize property. The full list of 1Signal
properties and methods is shown below:

Name Type Descriptions ‘
Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have
different signal properties. For time
domain signals, Properties refer to
SignalProperties. For frequency
domain signals, Properties refer to
FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency
domain

Unknown 0
Time 1
Frequency 2
Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data
frame at that index

Page 40 of 139

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetFrame(int, Double[][] Returns a double[][] with the data
_SpectrumScalingType, frame at that index. There are two
string) additional parameters that can convert

the returned data based on the
spectrum type and the engineering
unit.

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetParameter<T>(string) T Get the specified parameter by the
given name.
GetParameterType(string) string Get the specified parameter data type

by the given name.

An end-to-end code example
To summarize the above content, here is an example code that opens a recording, finds the signal
for the “Channel 4” time domain data, and reads out the frame data:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)").First();

// Get the frame, which is formatted like [[x1, x2, x3..], [y1, y2, y3..],..]
double[][] frame = signalCh4.GetFrame(9);

double[] xValues = frame[0];

double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Additional File Components - .TS and .GPS
An ATFX file may also come with a .ts and / or .gps where it lists the files as a file component
inside the ATFX file.

Page 41 of 139

3 E <files>
4 = <components

1= <identifier>External {4459520}_REC {20220419} (1) </identifier>
1 <filename>{4459520} REC {20220419} (1) . dat</filename>
1 - </ component>

1z H <Ccomponents

15 <identifier>External {445%520} REC {20220419} (1)</identifier>
20 <filenams>{4499520} REC {20220419}(1).ts</filename>

21 - </component>

2z F «</ffiles>

13 E <files>
14 = <Ccomponent>

1 <:::'Lclent.if:i.er::»External_RECUD&l«::,-"iclentifier::s
1 <filename>REC0041.dat</filename>
1 - </component>

18 [<component>

<identifier>External REC0041</identifier>
<filename>REC0041.gps</filename>

21 - </component>

22 - =/filess

In order to extract the data from these types of files users will need to import EDM.UTtils, which
will allow access to Utilty class that offers various getter methods that return properties or lists
of data from the ATFX file.

using EDM.Utils;

The Utility method to use to get external file components and return them as IRecording objects
in a list is GetListOfAllRecordings(IRecording). This method will at least return a list
containing one IRecording object that is the main recording of the ATFX file and contains the
bulk of the data.

private void ShowRecordings(IRecording rec)

{
List<IRecording> recordinglList = Utility.GetListOfAllRecordings(rec);

}

With a newly created recording of a .ts and / or .gps file, users can access their specific recording
properties and signals from the IRecording properties. These signals also contain their own set of
data and properties that can be stored in a list to keep track of.

The Utility method to use is GetListOfAllSignals(IRecording) that will return all the signals
inside the passed in recording in a list. And if that recording contains .ts and \ or .gps file, it will
also add their signals to the returned list.

private void ShowSignals(IRecording rec)
{

List<ISignal> recordinglList = Utility.GetListOfAllSignals(rec);
}

Opening a Time Stamp Signal (TS) or GPS Location File
It is possible to open a .ts and .gps file, given that the RecordingManager OpenRecording will
create a specific type of recording.

Page 42 of 139

Thus all that is needed to do is find the file path of the .ts or .gps and send it to the
RecordingManager.Manager.OpenRecording. Without having to access the ATFX external file
components.

RecordingManager.Manager.OpenRecording(string filePath, out IRecording recording);

var recordingPath = “C:\Sig@el.ts”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

// Grab data from IRecording
}
var recordingPath = “C:\Sig@el.gps”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{
// Grab data from IRecording

}

Reading the Record Properties

To read the Record Properties, which contains the ATFX file record information, it is extracted
directly from the IRecording.RecordingProperty using the Utilty GetListOfProperties
method, which will return a 2D list of strings. Each list contains the property name and property
value.

Or by calling the following properties in the IRecording.RecordingProperty.
Here are the RecordingProperty Class properties:

Name Type Descriptions

CreateTime DateTime When the file was recorded. It is not
when the file is saved. This parameter
can show the time accuracy as high as
second. To obtain the starting
recording time with better accuracy,
please add “StartNanosecond” in
integer that represents the additional
nanoseconds elapsed.

Instruments string The product name used to record/save
data to the file.

MasterSN int Serial number of the master module of
the system when the file was created

MeasurementType MeasurementConfigType Measurement type of the file

RecordingName string Name of the recording file

DeviceSNs string Serial numbers of the 1 or many

modules used in the recording
RecordingPath string Recording file save path

Page 43 of 139

RecordingType RecordingType The type of recording based on its file

extension

RecordingTypeName string Recording type name based on its file
extension

SavingVersion Version EDM version number when the file
was created.

TestNote string Test notes given by the user before the
test ran

User string The EDM account name when the file

was created.

Calling Individual Recording Property

DateTime createTime = [IRecording object].RecordingProperty.CreateTime;
string instrument = [IRecording object].RecordingProperty.Instruments;
uint masterSN = [IRecording object].RecordingProperty.MastersSN;

etc.

GetListOfProperties

The Utility GetListOfProperties method is useful in getting a list of various data types in the
RecordingProperty class. It returns a 2D list of strings with the property name and property value
for each list.

Utility.GetListOfProperties(object item);

var recordingPath = “C:\Sig@el.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{
foreach(List<string> property in Utility.GetListOfProperties(rec.RecordingProperty))

{
dataGridRecord.Rows.Add(property[@], property[1]);

}

}

Page 44 of 139

Record Information Signal Basic Information Signal Advanced Infol

| Property

Instruments

Value

Admin

Spider

TestMote

Random55/Runi0

Mame

SIGOO10

RecordingPath

Ch\Users\KevinCheng\Documen..,

Type

ODS_ATF_XML

RecordingTypeMName

ASAM ODS5 Format - XML

Wersion

10.0.8.30

CreateTime

3/7/2022 3:23:19 PM

Mastersh

2550576

UserAnnotation

Random55/Runid

MeasurementType

Reading the GPS Data

VC5_Random

To read the GPS data, it is extracted from the IRecording object as a

ODSNVHATFXMLRecording object and locating the Measurement and Environment
property. These properties are AoMeasurement and AoEnvironment, which can be converted
into NVHMeasurement and NVHEnNvironment.

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

In order to use NVHMeasurement and NVHEnvironment, users must import ASAM.ODS.NVH,;
using ASAM.ODS.NVH;

Here are the NVHMeasurement Class properties:

Name Type

Altitude double
GPSEnabled bool
Latitude double
Longitude double
MeasurementBegin DateTime
MeasurementEnd DateTime
NanoSecondElapsed int

Here are the NVHEnNvironment Class properties:

Page 45 of 139

Name Type
FirmwareVersion string
InstruSoftwareVersion string
HardwareVersion string
BitwareVersion string
TimeZone string

Here are the AoEnvironment Class methods:

Name Return Type Descriptions
GetLocalTime(DateTime) DateTime Get time in local format
GetUTCTime(DateTime) DateTime Get time in UTC format

The code snippet below shows the extraction of GPS related data.

private void ShowGPSInfo(IRecording rec)
{
if (rec is ODSNVHATFXMLRecording nvhRec)
{
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;
NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;
bool bGPS = nvhMeasurement.GPSEnabled;

if (bGPS)
{
dgvRecInfo.Rows.Add("GPS Enabled", bGPS);
double 1lng = nvhMeasurement.Longitude;
double lat = nvhMeasurement.Latitude;
double alt nvhMeasurement.Altitude;
double nano = nvhMeasurement.NanoSecondElapsed;

dgvRecInfo.Rows.Add("Longitude", 1lng);
dgvRecInfo.Rows.Add("Latitude", lat);
dgvRecInfo.Rows.Add("Altitude", alt);
dgvRecInfo.Rows.Add("Nanoseconds Elapsed", nano);

}

if (!String.IsNullOrEmpty(nvhEnvironment.TimeZoneString))
{

}

dgvRecInfo.Rows.Add("Time Zone", nvhEnvironment.TimeZoneString);

dgvRecInfo.Rows.Add("Created Time (UTC)",
Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null));

if (!String.IsNullOrEmpty(nvhEnvironment.InstruSoftwareVersion))
{

dgvRecInfo.Rows.Add("Created Time (Local)", nvhRec.RecordingProperty.CreateTime);

Page 46 of 139

dgvRecInfo.Rows.Add("Instrument Software Version",
nvhEnvironment.InstruSoftwareVersion);
dgvRecInfo.Rows.Add("Hardware Version", nvhEnvironment.HardwareVersion);
dgvRecInfo.Rows.Add("Firmware Version", nvhEnvironment.FirmwareVersion);
dgvRecInfo.Rows.Add("Bit Version", nvhEnvironment.BitVersion);
}

}
}

var recordingPath = “C:\Sig@el.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{
ShowGPSInfo(rec);
}
Property Walue
Instruments GRS
TestMote Untitled Test Note
Hame {4499520) REC_{20220419){1) - C...
RecordingPath Ch\Users\KevinCheng\Downloa...
Type OD5_ATF_XML
RecordingTypeMame ASAM ODS Format - XML
Version 10.0.8.41
DeviceSMs 44559520
Mastersh 44559520
MeasurementType Mone
GPS Enabled True
Longitude o
Latitude 37.38046
Altitude 1242
Manoseconds Elapsed 629999338
Time Zone UTC-05:00
Created Time (Local) 4/18/2022 6:47:10 PM
Created Time (UTC) 4/18/2022 10:47:10 PM

Extracting the Date and Time of a Recording
To extract and read the time data that a recording has, users will have to import and use the
DateTimeNano object, which is an extension of the DateTime that includes nanosecond data.

To use the DateTimeNano class, users will need to import Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those
are referenced in the link below:

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Name Type Descriptions ‘

Page 47 of 139

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

IsNanoTime DateTime Gets whether nanoseconds exists / not
equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0
Distinguish between normal time
and nanosecond time
Milisecond.Microsecond.Nanosecond
000/000/000

The following code snippet shows how to extract, create and display the DateTimeNano object
properties.

private void ShowDateTimeNano(IRecording rec, bool islLocal)

{
if (rec is ODSNVHATFXMLRecording nvhRec)

{
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;
DateTimeNano createTimeUTC;
if (isLocal)
{
createTimeUTC = new DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);

}

else
{
createTimeUTC = new
DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null),
nvhMeasurement.NanoSecondElapsed);
}

dgvRecInfo.Rows.Add("Year", createTimeUTC.Year);
dgvRecInfo.Rows.Add("Month", createTimeUTC.Month);
dgvRecInfo.Rows.Add("Day", createTimeUTC.Day);
dgvRecInfo.Rows.Add("Hour", createTimeUTC.Hour);
dgvRecInfo.Rows.Add("Minute", createTimeUTC.Minute);
dgvRecInfo.Rows.Add("Second", createTimeUTC.Second);
dgvRecInfo.Rows.Add("Millisecond", createTimeUTC.Millisecond);
dgvRecInfo.Rows.Add("IsNanoTime", createTimeUTC.IsNanoTime);
dgvRecInfo.Rows.Add("NanoSeconds", createTimeUTC.ms_us_ns);
dgvRecInfo.Rows.Add("TotalNanosec", createTimeUTC.TotalNanoSeconds);
dgvRecInfo.Rows.Add("Date Time", createTimeUTC.DateTime);
dgvRecInfo.Rows.Add("TimeOfDay", createTimeUTC.TimeOfDay);
dgvRecInfo.Rows.Add("ToNanoString()", createTimeUTC.ToNanoString());

int ms (int)(createTimeUTC.ms_us_ns / 1e6);

int us = (int)(createTimeUTC.ms_us_ns / 1le3 % 1le3);

int ns = (int)(createTimeUTC.ms_us_ns % 1e3);

string customFormat = string.Format("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}",
createTimeUTC.Year, createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour,
createTimeUTC.Minute, createTimeUTC.Second, ms, us, ns);

dgvRecInfo.Rows.Add("Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns", customFormat);

}
}

Page 48 of 139

var recordingPath = “C:\Sig@el.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{

ShowDateTimeNano(rec, false);

}

Property Value
—

Month 4

Day 18

Haour 22

Minute 47

Second 10

Millisecond o

IsManaTime True

ManoSeconds 629999338

TotalManosec B82030629999333

Date Time 4/18/2022 10:47:10 PM
TimeOfDay 22:47:10

ToManoString() 4/18/2022 10:47:10 PM.629,999,338
Custom Format: yyyy/mm/dd/hh... | 2022/4/18/22/47/10,/629,/999/338

Reading the Input Channel Table Data

The Input Channel Table is a list of channels based on how many inputs of the test’s recording
instrument system, such as a Spider 80X 8 Channels. These channels, attached with sensors,
measured physical quantities to voltages by the front-end hardware then read into physical units
by the EDM software.

Below is a list of data columns that the input channel has for each channel:

Data Column Name Description

On/Off Enables or disables the channel.

Location ID Assigns a custom label used to identify the source in the signal display
and other setup windows.

Measurement Defines the physical unit that will be measured by the sensor

Quantity connected to the channel.

Sensitivity Sets the proportionality factor for the measurement (millivolts per

engineering unit) given as a parameter of the sensor.
Input Mode The electrical interface mode of the sensor.

DC-Differential - Neither of the input connections is referenced to the
local ground. The input is taken as the potential difference between
the two input terminals, and any potential in common with both
terminals is canceled out.

Page 49 of 139

Input Range
Sensor

Max Sensor Range
Integration

High-Pass Filter Fc
(Hz2)

Channel Type
Measurement Point
DOFs

Control Weighting

Description
Coordinate

Time Weighting

DC-Single End - One of the input terminals is grounded and the input
is taken as the potential difference of the center terminal with respect
to this ground. Use this mode when the input needs to be grounded to
reduce EMI noise or static buildup.

AC-Differential - A differential input mode that applies a low-
frequency high-pass (DC-blocking) analog filter to the input. It rejects
common mode signals and DC components in the input signal.

AC-Single End - Grounds one of the input terminals and enables the
DC-blocking analog filter.

Integral Electronic PiezoElectric (IEPE (ICP)) - A class of
transducers that are packaged with built-in voltage amplifiers powered
by a constant current.

Charge - For high-sensitivity piezoelectric units that lack a built-in
voltage mode amplifier (i.e. IEPE), allowing them to be used in high-
temperature environments.

The voltage range of the Input Mode.
Defines the sensor setting applied to an input channel.
Defines the maximum input voltage allowed.

Allows having No Integration, Integration, or Double Integration
applied.

Sets the digital high-pass filter frequency, used to block spurious low
frequency and DC signals. To measure very low frequency or DC
signals set this value to zero and use the DC-SE or the DC-DI input
mode.

The type of channel, whether it is a Control or Monitor channel.
The measure point that the input channel is connected to.

The degree of freedom of the channel that is the combination of
entered Measurement Point and Coordinate.

Used when more than one control channel is present for weighted
averaging. See the description for the Control Strategy test parameter.
The weighting factors are automatically normalized. For example,
enter weighting factor 2.0 for channel 1, 1.0 for channel will be the
same as entering factor 4.0 for channel 1 and 2.0 for channel 2.

Used to add users’ notes.
Specifies the measurement position and direction of the sensor.

Defines the time weighting for exponential averaging. (Only available
in acoustic test)

Page 50 of 139

Reading the Input Channel Data Through Utility Class

To read the Input Channel Table data stored in the ATFX file, it is extracted from the IRecording
object using the Utility GetChannelTable method, which will return a 2D list of strings. Each
list contains one row of channel data.

Utility.GetChannelTable(IRecording);

var recordingPath = “C:\Sig@e@l.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{
if(rec == null)
return;

foreach (List<string> channel in Utility.GetChannelTable(rec))

{
dgvChannel.Rows.Add(channel.ToArray());

}
}
Location ID TCyILaEHne\ Igue::‘:;;ment Er:-l?tineermg Sensitivity Input Mode Input Range Sensor SM :;z)zesensor Intergration &?g;’ﬂmg
Chi Control Acceleration m/s* 10.19716{mv/m/s%) | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch2 Maonitor Acceleration m/s* 10.19716{mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch3 Off Acceleration m/s* 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Ma Integration 1
Ch4 Off Acceleration m/s® 10,197 16(mv/m/s%) | AC_SingleEnd AutoRange 20 No Integration 1
Chs Off Acceleration m/s* 10.19716{mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Ché Off Acceleration m/s* 10.19716{mv/m/s%) | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch7 Off Acceleration m/s* 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Ma Integration 1
Cha Off Acceleration m/s* 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Ma Integration 1

Calling Individual Properties of Input Channel

It is possible to directly call input channel data from an IRecording object, although it is
recommended to use the Utility GetChannelTable method. To get the necessary input channel
object, the IRecording must be converted to a ODSNVHATFXMLRecording object to locate
the ChnSensitivitys property. This property can also be converted into a
NVHTestEquipmentPart.

ODSNVHATFXMLRecording odsRec = rec as ODSNVHATFXMLRecording;
ChannelSensitivity eq in odsRec.ChnSensitivities[@];

NVHTestEquipmentPart channel = eq.EquipmentPart;

The ODSNVHATFXMLRecording and ChannelSensitivity class already comes with the
importation of EDM.Recording and EDM.RecordinglInterface.

However, there are also additional imports, such as the ASAM.ODS.NVH, that will be used in
this section.

using ASAM.ODS.NVH;

Below shows a way of extracting data directly from the NVHTestEquipmentPart object.

var recordingPath = “C:\Sig@e@l.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

{

Page 51 of 139

ODSNVHATFXMLRecording odsRec = rec as ODSNVHATFXMLRecording;

foreach (ChannelSensitivity eq in odsRec.ChnSensitivitys)

{

NVHTestEquipmentPart channel = eq.EquipmentPart;
if (channel == null) continue;

dataGridChannel.Rows.Add(channel.LabelTitle,
channel.ChannelType.ToChannelTypeString(),
channel.QuantityName,
channel.EUName,
$"{channel.Sensitivity}(mv/{channel.EUName})",
channel.ChannelStatus.ToChannelStatusString(),
channel.InputRange.ToChannelRangeString(),
channel.SensorSN,
channel.SensorRange,
channel.Intergration.ToChannelIntegrationString(),
channel.Weighting);

Reading the Signal Properties

To read the Signal Properties, which contains the ATFX file signal property information, it is
extracted directly from the 1Signal.Properties using Utilty GetListOfProperties method, which
will return a 2D list of strings. Each list contains the property name and property value.

The 1Signal interface already comes with the importation of EDM.Recordinglnterface.

Here are the 1Signal Class properties:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have
different signal properties. For time
domain signals, Properties refer to
SignalProperties. For frequency
domain signals, Properties refer to
FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency
domain
Unknown 0

Page 52 of 139

Time 1

Frequency 2
Trend 3
Name Return Type Descriptions
GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetFrame(int, Double[][] Returns a double[][] with the data
_SpectrumScalingType, frame at that index. There are two
string) additional parameters that can convert

the returned data based on the
spectrum type and the engineering
unit.

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetParameter<T>(string) T Get the specified parameter by the
given name.
GetParameterType(string) string Get the specified parameter data type

by the given name.

Using a List to Store and Recall Signals

When working with the Signals list from IRecording object, it would be best to store it in a list to
easily reference to it, especially when selecting which signal properties or data to display. This
can be done by the Utility GetListOfAllSignals that returns a list of 1Signal from the ATFX file.

Utility.GetListOfAllSignals(IRecording);

var recordingPath = “C:\Sig@e@l.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

1bSignalDataInfo.Items.AddRange(Utility.GetListOfAllSignals(rec).ToArray());
}

Page 53 of 139

Block(Ch2)
Block(drive)
APS[Ch1)
APS[Ch2)
APS(drive)
cantrol(f}
noise(f]
profile(f)
HighAbart(f)
Highalarmif}
LowAb ort(f)
LowAlarmif)
Hif)

Basic Signal Information
Here are the SignalProperties Class properties:

Name Type Descriptions
BlockSize int Get the block size Number of time
data points captured in the signal
DeviceSN string The recording instrument serial
numbers
Duration string Get the signal duration Amount of
time covered by the signal
GeneratedTime DateTimeNano Qet the signal generated time from
Instrument
Instruments string Get the instrument
MeasurementType MesaurementConfigType Get the MeasurementType
RecordingProperties RecordingProperty Get the RecordingProperties
SamplingRate string Get the sampling rate Number of data
samples acquired per second
SignalName string Get the signal name
SignalType SignalType Get the signal type
Unknown 0
Time 1
Frequency 2
Trend 3
SoftwareVersion version Get the software version
UnitX string Get the X unit
UnitY string Get the Y unit
UnitZz string Get the Z unit

Page 54 of 139

Calling individual property
ISignal signal = [IRecording object].Signals[@];

Common.DateTimeNano dateTimeNano = signal.Properties.GeneratedTime;
MeasurementConfigType measureType = signal.Properties.MeasurementType;
SignalType type = signal.Properties.SignalType;

etc.

GetListOfProperties
The Utility GetListOfProperties method is useful in getting a list of various data types in the

SignalProperties class. It returns a 2D list of strings with the property name and property value
for each list.

The following code snippets display the signal information.
Utility.GetListOfProperties(object item);

private void BtnSignalBasicInfo_Click(object sender, EventArgs e)
if (1lbSignalDataInfo.SelectedItem is ISignal signal)

foreach(List<string> property in Utility.GetListOfProperties(signal.Properties))
{
dgvSignalDataInfo.Rows.Add(property[@], property[1]);
}
}
}

Record Information 5ignal Data Infarmation Channel Table

Block(Ch1) Pro
perty Value
Block(Ch2)
Block{drive) Random57/Runi2Rando...
APS(Ch1)
APS(Ch2) MeasurementType VC5_Random
AP5(drive] SignalType Time
controlif}
noise(f) GeneratedTime 3/24/2022 1:48:58 PM
profile(f] .
HighAbortif] SignalMame Black{Ch1)
HighAlarmif} samplingRate 512 kHz
LowAbort(f)
LowAlarmif) BlockSize 1024
Hif) -
limit_natch(Ch1) Duration 0.2 (s)
limit_notch(Ch2) . B
limit_high_abort(Ch1) Unit¥ Time [s)
limit_high_abort{Ch2) Unity m/s*
limit_high_alarm{Ch1} _
limit_high_alarm{Ch2) UnitZ H/A
MNvhType MonEquidistant
AcquisitionCalculateMeth... | Undefined
sV CS5ignal True

Advance Signal Information
Here are the DSASignalProperty Class fields:

Name Type Descriptions ‘

Page 55 of 139

averageMode
averageNumber

blocksizeLine
elapsedTime

frequencylndex

outputPeak

overlapRatiolndex

rpmTachol
rpmTacho2
testLastSavedTime
testName

totalFrameNumber

windowTypelndex

And here are the VCSSignalProperty Class fields:

Name
controlPeak
controlRMS

currentFrequency

curRepeat

displacementPkPk
drivePK

fullLevelElapsed

int

int

string
double

int

double

int

double
double
DateTime
string

int

int

Type
double
double

double

int
double

double

double

average mode index when signal data
saved

average number when signal data
saved

block size line when signal data saved
elapsed time when signal data saved

sample rate index when signal data
saved

output peak when signal data saved

overlap ratio index when signal data
saved

rpm tacho 1 when signal data saved
rpm tacho 2 when signal data saved
last saved time of the test

test name

total frame number(or current average
number) when signal data saved

window type index when signal data
saved

Descriptions ‘

control peak (m/s2) when data saved

current control RMS (m/s2) when data
saved

current frequency when data saved
(Sine)

current repeat times when data saved

displacement peak peak (m) when data
saved

current drive peak (voltage) when data
saved

full level elapsed when data saved
(time in Random/Sine/TDR, pulses in
Shock system)

Page 56 of 139

level double current VCS level when data saved

nextDrivePK double next predicted drive peak (voltage)

nextLevel double next predicted VCS level

pulseWidth double main pulse width in classic Shock

remaining double remaining time when data saved (time
in Random/Sine/TDR, pulses in Shock
system)

remainingCycle double remaining cycles when data saved
(Sine)

sweepNumber int sweep number when data saved (Sine)

sweepRate double sweep rate when data saved (Sine)

sweepType int sweep type when data saved (Sine)

targetPeak double target peak (m/s2) when data saved

targetRMS double target RMS (m/s2) when data saved

testLastRunTime DateTime last run time of the test

testLastSavedTime DateTime last saved time of the test

testName string test name

totalCycle double total cycles when data saved (Sine)

totalElapsed double total elapsed time when data saved
(time in Random/Sine/TDR, pulses in
Shock system)

totalRepeat int total repeat times when data saved

velocityPk double velocity peak (m/s) when data saved

Calling individual field
ISignal signal = [IRecording object].Signals[@];

int avgMode = signal.Properties.dsaProperties.averageMode;
string name = signal.Properties.dsaProperties.testName;
double level = signal.Properties.vcsProperties.level;

double remaining = signal.Properties.vcsProperties.remaining;
string name = signal.Properties.vcsProperties.testName;

etc.

GetListOfProperties

Page 57 of 139

Here is a code snippet for displaying the advance signal information, depending on if the signal
comes from VCS or DSA.

For the showPublicField, it can be set to false to show the basic signal information or to true to
show the advance signal information.

Utility.GetListOfProperties(object item, bool showPublicField);

private void ShowContents(DataGridview grid, object item, bool showPublicField = false)

{
grid.Rows.Clear();

foreach(List<string> property in Utility.GetListOfProperties(item, showPublicField))
{
grid.Rows.Add(property[@], property[1]);
}
}

private void BtnSignalAdvInfo_Click(object sender, EventArgs e)

if (1lbSignalDataInfo.SelectedItem is ISignal signal)

{

//if signal is a dsa signal, dsa properties should not be empty

if (signal.Properties.dsaProperties != null)

{

ShowContents(dgvSignalDataInfo, signal.Properties.dsaProperties, true);

}

//if signal is a vcs signal, vcs properties should not be empty

if (signal.Properties.vcsProperties != null)

{

ShowContents(dgvSignalDataInfo, signal.Properties.vcsProperties, true);
}
}
}

Page 58 of 139

Record Information 5ignal Data Information Channel Table

Property Value
Random57

[Blockichy)]
Black(Ch2)
Block(drive)

APS|Ch1)

APS[Ch2)

APS[drive)

control(f]

noiseff]

profile(f]

HighAbort(f)
HighAlarmif}
LowAbort(f)
LowAlarm(f]

Hif)

limit_notch{Ch1}
limit_notch{Ch2)
limit_high_abort(Ch1)
limit_high_abort(Ch2)
limit_high_alarm(Ch1]}
limit_high_alarm(Chz2}

Advance Generated Time

testlastSavedTime

3/24/2022 1:48:58 PM

testlastRunTime

3/24/2022 1:4813 PM

level 1

drivePK 0.456419169902802
controlRMS 9.68552017211914
targetRMS 9.8128662109375
controlPeak o

targetPeak [H

fullLevelElapsed

11

remaining 289,100006103516
totalElapsed 43,5499992370605
velocityPk 0.0249415971338749
displacementPkPk 0.000173337204614654
pulseWidth (1]

DOF 54

currentFrequency [+]

totalCycle (1]

remainingCycle [H

sweepType (1]

Show Basic Signal Info | | Show Advance Signal Info

The Generated Time property for Signal is a DateTimeNano object, which is imported from

Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are omitted:

Name Type
IsNanoTime DateTime
TotalNanoSeconds int
ms_us_ns int

Calling individual property

ISignal signal = [IRecording object].Signals[@];

uint ms_us_ns =

Descriptions

Gets whether nanoseconds exists / not
equal to zero

Get TotalSeconds in Nano Seconds

We use this NanoSeconds==0
Distinguish between normal time
and nanosecond time
Milisecond.Microsecond.Nanosecond
000/000/000

signal.Properties.GeneratedTime.ms_us_ns;

Page 59 of 139

ulong totalNanoSec = signal.Properties.GeneratedTime.TotalNanoSeconds;
int seconds = signal.Properties.GeneratedTime.Second;

etc.

GetL istOfProperties

The Utility GetListOfProperties method is useful in getting a list of various data types in the
DateTimeNano class.

Utility.GetListOfProperties(object item);

DateTimeNano generatedTime = [ISignal object].Properties.GeneratedTime;
private void BtnShowGeneratedTime_Click(object sender, EventArgs e)

if (1lbSignalDataInfo.SelectedItem is ISignal signal)

foreach(List<string> property in
Utility.GetListOfProperties(signal.Properties.GeneratedTime))
{
dgvSignalDataInfo.Rows.Add(property[@], property[1]);
}
}
}

Record Information Signal Data Information Channel Table Merge Info

Block(Ch1 Pro
perty Value
Block(Ch2)
APS(Ch1)
APS(ChZ) Maonth 3
APS(drive) Day 29
control(f)
noise(f] Haur 16
profilef) .
HighAb ortf) Minute 14
HighAlarmif] Second 54
Lowabort(f)
Lowedlarmif) Millisecond]
H
fi TimeOfDay 16:14:54
lsMNanaTime False
TotalManosec 58434000000000

Reading the Data Values of a Signal Frame

A signal frame is a snapshot of measurement data that consists of X, Y and sometimes Z data.
Each of these frames consists of an array with the size according to Signal.FrameSize property.
Each signal usually has 1 Frame (unless it is a waterfall or 3D plot), and the Signal.FrameCount
property describes how many frames are in the signal.

The X and Y formulate points in a chart where X can be Time or Frequency and Y can be a
variety of engineering units, such as Voltage, Acceleration, Velocity, Displacement, Force, etc.

And the Z is generally the time since the device start measuring.
Thus, if a user were to graph the the X and Y data, they would get a plot graph like below.

Page 60 of 139

103 . . . I'-I‘Iot of :‘.he ch|1

=
@
o

chi

& & i

w w b

] - w0
:

Voltage (V)

=
©
=)

g

=
©
o

5.06 L L L L I L L L L
0 0002 0.004 0.006 0.008 0.01 0012 0.014 0.016 0.018 0.02

Time (S)

A Frame object is stored inside a parent Signal object according to the following structure:

Concept Class Type Example
Signal <ISignal> Block(Chl)
- Frame <double[][]> Signal.GetFrame(0)
o Frame[0] <double[]> Array of x-values
o Frame[1] <double[]> Array of y-values
o Frame[2] <double[]> Array of z-values
(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,
and (if applicable) the third array is the z-values.

More information about the Frame (e.g., Frame Size) can be queried from the I1Signal parent
object. The ISignal parent object for the Frame also supports the following additional
properties:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have
different signal properties. For time
domain signals, Properties refer to
SignalProperties. For frequency

Page 61 of 139

domain signals, Properties refer to
FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency
domain

Unknown 0
Time 1
Frequency 2
Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data
frame at that index

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetFrame(int, Double[][] Returns a double[][] with the data
_SpectrumScalingType, frame at that index. There are two
string) additional parameters that can convert

the returned data based on the
spectrum type and the engineering
unit.

A snapshot of measurement data
consisting of X, Y and sometimes Z

values.
GetParameter<T>(string) T Get the specified parameter by the
given name.
GetParameterType(string) string Get the specified parameter data type

by the given name.

An end-to-end example of reading a Frame from a Signal, which can be read from a Recording:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

Page 62 of 139

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)"').First();

// Get the frame, which is formatted like [[x1, x2, x3..], [y1, y2, y3..],..]
double[][] frame = signalCh4.GetFrame(9);

double[] xValues = frame[0];

double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Record Information Signal Data Information Channel Table

EIER] ¥ Data-Time (5] ¥ Data-m/s*
Block(Ch2)

APS(Ch1)

APS(Ch2) 1,953125E-004 1.084685E-001
APS(drive) 3.906250E-004 -1,259770E-001
control(f)

naise(f) 5,859375E-004 -8,884092E+000
profile(f]

Highabort) 7.812500E-004 7.022393E-001
Highalarmi(f) 9,765625E-004 19,082394E+000
LowAbort(f)

LowAlarm(f] 1.171875E-003 -2.056571E=001
Hif)

limit_natch(Ch1)
limit_natch(Ch2)

limit_high_abort{Ch1)
limit_high_abort{Ch2)
limit_high_alarm(Ch1)
limit_high_alarm(Ch2)

1.367133E-003
1.562500E-003
1.757813E-003
1,953125E-003
2,143433E-003
2,343750E-003
2.539063E-003
2,734375E-003
2,929633E-003
3.125000E-003
3.320313E-003
3.515625E-003
3.710933E-003

-2.554410E+001
-1.424093E+001
4.717639E+000
3.687933E+000
1.276019E+001
1.329508E+001
-9,056539E+000
-1.155804E-001
1.046004E+001
-1.712991E+000
-1,931287E+000
-2,037931E+000
-6.202362E+000

Show Basic Signal Info

Show Advance Signal Info

Show Signal Frame Data

Reading Frequency Signal Frame Data

The ATFX API can read the frequency signal frame data in other spectrum types and
engineering units. Spectrum Type defines the units for spectrum signals as power spectral
density (EU%/Hz), energy spectral density (EU%s/Hz), squared units (EUms?), peak units (EUpeak),
or RMS (EUrms).

The engineering units from EDM global settings should be saved in the ATFX file, however, the
spectrum type is not. The default for the spectrum type is (EUrms)”2. Thus, if the data read by
the ATFX API is different then what is in EDM, try passing in different engineering units and
spectrum types.

Frequency Response Function (FRF) related signals, such as FRF, H, Cross Power Spectrum
(CPS) and Fast Fourier Transform Spectral Analysis linear (FFT) spectrum are read in Real &

Page 63 of 139

Imaginary. These signals also pair the Real & Imaginary numbers in the Y data, thus X data
frame size may be 512 and the Y data frame size is 1024.

The ISignal class comes with a GetFrame(int index, _SpectrumScalingType spectrum, string
engineeringUnit) that users can use to convert the returned frame data. And for reading the Y
labels for the FRF related signals, the 1Signal class has GetY Label, which returns a list of
strings. And depending on the signal, the first string in the list will be enough for the Y data
label, but if it’s a FRF related signal, the second string in the list will act as the imaginary type Y
data label.

Note that spectrum types only apply to Power Spectrum and Linear Spectrum signals and do not
apply to transfer functions, phase functions or coherence functions. Whereas the engineering
units should change every signal. There are also spectrum signals that only has a select amount
of spectrum types, such as Sine spectrum with EUrms, EUPeak and EUPeak-Peak or Octave
spectrum with EUrms? and EUrms.

ISignal.GetFrame(int, _SpectrumScalingType, string);
ISignal.GetYLabel();

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig@el.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 1 signal, select the signal whose name is ‘APS(Ch1)’
ISignal signalChl = signals.Where(sig => sig.Name == ‘APS(Chl)').First();

// Get the frame, which is formatted like [[x1, x2, x3..], [y1, y2, y3..],..]
double[][] frame = signalChl.GetFrame(@, _SpectrumScalingType.EUPeak,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);

double[] xValues = frame[0];

double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

string signalChlYLabel = signalChl.GetYLabel()[9O];

// If statement for obtaining the 2nd Y data label if the signal is related to FRF
// Also applies to Cross power spectrum and FFT

if (signal.Properties.NvhType == _NVHType.FrequencyResponseSpectrum)
{

string signalChl_2ndYLabel = signalChl.GetYLabel()[1];
}

Page 64 of 139

Black(Ch1) X Data-Frequency [Hz] Y Data- g (0-peak]
Hlockich2) quency (Hz) g (0-peak)
Hodicny
Block(Ch4)
Block(Che 25 0.000158114866204364
50 6.52407611600791E-06
APSICh2)
APS[Ch3) 75 5.5605628475097TE-06
APSICh4)
APS(ChS) 100 4,81845486436046E-06
125 4,27552921666523E-06
150 3.64940075677389E-06
175 3.59262165824685E-06
200 2.85317043372338E-06
225 2.85368845865449E-06
250 3.07391155226024E-06
Change how the signal frame data is read. EUpeak v m
This does not change the values inside the ATFX file.
Block(Ch1) X Data-Fi H: /5 (RMS)
Blocacn) ata-Frequency [Hz) m/s3 [RMS)
Block(Chd)
BlockiChs) 25 1.20214475318789E-06
50 2.04667740035802E-09
APS[Ch2)
APS(Ch3) 75 1.48678736877628E-09
APS[Ch4]
APS(ChS) 100 1.11641829789733E-00
125 8.79004528542282E-10
150 6.40404641671921E-10
175 6.20632226855378E-10
200 3.91441426472738E-10
225 3.91583580494625E-10
250 4.54353721579537E-10
Change how the signal frame data is read. (EUrms)® ~ | |
This does not change the values inside the ATFX file.
Block(Ch1) Amagi
Block(Ch2) ¥ Data-Frequency (Hz) ¥ Data-Real [m)/[m/s%) T&i;{g)ammw
Block(Ch3)
Block(Chd) 2.17429424083093E-05 0
Block(ChS)
BlockChe] 5 -3.58616807716317E-06 9.93081448541488E-06
Block(Ch7) 10 -2.79689572835196E-07 6.38803328456561E-07
Block(Chg)
Blockldrive) 15 -1.08067453652438E-07 8.15487837257933E-08
APS(Ch1)
APS{Ch2) 20 -2.51281273828426E-08 8.01220867430175E-09
:Egﬁg:z} 25 6.75226674573537E-09 -4.5313473862052E-08
APS(Ch5) 30 3.39580319419497E-09 -5.3946718617392E-09
APS(Ché]
Apsfcrﬂ% 35 7.18608195171555E-09 4.75262886823202E-08
APSIChE) 40 1,27004264382657E-08 4,73981494053533E-08
APS(drive]
controlff) a5 5.7980775736155E-09 1.140143263868528E-08
noise(f}
profile(f) 50 3.07961940393398E-08 -6.5433223284117E-09
Highabortif) 55 1.10163531630202E.08 -2.2000733336671E-08
HighAlarm(f]
LowAbaortif) 80 1.75667995705453E-08 1.48446020003552E-08
Lowalarmif)
H 65 3.95185537627185E-08 3.55755886071565E-08
FRF(Ch3.Chi] 70 1.47341427947367E-08 1.7456003478319E-08
Block(Ch1) -
BlockiCh2) ¥ Data-Frequency [Hz) ¥ Data-Real [m)/(m/s%) ‘Il'm;d;t:vlsr‘l;agmaw
Block(Ch3)
Block(Ch4) 1.18312773338403E-05 0
ggzﬂg: 2} 4,99999992549419 -2.42805367633991E-06 1.55340148921823E-05
gOCEEE:Q 9.99999985096838 -1.42553767545905E-06 -7.00795908414875E-07
{s]a
Block(drive) 14,9999997764826 -2.05770874117661E-07 2.50104761789771E-07
APS|Ch1
APSECHZ} 19.9999997019768 -4.31938680378607E-08 1.89972055364018E-08
:;25?:3 24.9999996374709 5.92527860110437E-10 -4,0975738357929E-08
APS(ChS) 29,9999995529651 6.78589806568652E-09 -3.50743505350692E-08
APS(ChE]
Apsfc,ﬂ% 34,9999994784593 5.12031572696969E-09 2.32202221394795E-08
:E§ESZ?L] 39,9999994039535 2,54867309479323E-08 4,87005671345742€6-08
control(f) 44,9999993294477 8.84821993452078E-09 1.72598184633443E-08
noise(f)
profile) 49,9999992549419 3.7220622051882E-08 -1.24026939829491E-08
HighAbort(f) 54.9999991304361 1.45628975545264E.00 -2.90616544162958E.08
Highalarmif}
LowAbort(f) 59.9999991059303 5.26843857429071E-09 1.52049284274369E-09
LowAlarmif)
Hif) £4.99999903 14245 2.67513469598526E-08 2.68895021304383E-08
ERFICh2,Ch) 69.9999989569187 6.54148779588561E-09 2.88359309763564E-08
FRF!ChS cmi
e 74,9999988824128 2.90316237716581E-09 3.83329350484019E-08
H(Ch1,Ch2) 79,999998307907 1.54965622556347E-08 5.24112486743888E-08
HICh3,Ch2)
HEcm'cn 3{ 84,9999987334012 5.89037041365259E-09 2.11882795753127E-08

Page 65 of 139

Getting Spectrum Types or Engineering Units
Each signal is a specific type that has its own spectrum type and engineering unit (EU) that can
convert the frame data when passing it through the GetFrame method.

For example:
APS signal in Acceleration

Spectrum Type: EUrms?, EUrms, EUPeak, EUPeak-Peak, EU%/Hz, EU%s/Hz, sqrt(EU?/Hz),
sqrt(EU%s/Hz)

Acceleration EU: m/s2, cm/s2, mm/s?, g, ft/s?, in/s?, mil/s?, gal

The Utility class has several methods for getting the enum _SpectrumScalingType, the spectrum
type names, and the engineering unit names.

Name Return Type Descriptions ‘

GetListOfSpectrumTypes List<string> Takes in a I1Signal and returns a list
of strings of spectrum type names
depending on the signal NVH type.

GetSpectrumType _SpectrumScalingType Takes in a string that is the
spectrum type name and returns the
equlivant enum
_SpectrumScalingType.

GetSpectrumTypeString string Takes in a _SpectrumScalingType
and returns the equlivant string
spectrum type name.

GetSignalQuantityEngiUnit string[] Takes in a I1Signal and returns a

Strings string array that contain
engineering units of a signal
quantity.

Utility.GetListOfSpectrumTypes(ISignal);
Utility.GetSpectrumType(string);
Utility.GetSpectrumTypeString(_SpectrumScalingType);
Utility.GetSignalQuantityEngiUnitStrings(ISignal);

private void LbSignalDatalInfo_SelectedIndexChanged(object sender, EventArgs e)
{
if (1bSignalDataInfo.SelectedItem is ISignal signal)
{
if (signal.Type == SignalType.Frequency &&

(signal.Properties.NvhType == _NVHType.FrequencyResponseSpectrum ||
signal.Properties.NvhType == NVHType.CrosspowerSpectrum ||
signal.Properties.NvhType == NVHType.Coherence ||
signal.Properties.NvhType == _NVHType.Equidistant))

{
cbEngiUnit.Items.Clear();

Page 66 of 139

cbEngiUnit.Enabled = false;

}
else
{
cbEngiUnit.Enabled = true;
cbEngiUnit.Items.Clear();
cbEngiUnit.Items.AddRange(Utility.GetSignalQuantityEngiUnitStrings(signal));
cbEngiUnit.SelectedItem = signal.GetUnit(1);
}
if (signal.Type == SignalType.Frequency && !signal.Name.Contains("Swept THD") &&
(signal.Properties.NvhType == _NVHType.AutopowerSpectrum ||
signal.Properties.NvhType == NVHType.OctaveAutopowerSpectrum | |
signal.Properties.NvhType == _NVHType.OrderAutopowerSpectrum))

cbSpecScaleType.Enabled = true;
cbSpecScaleType.Items.Clear();
cbSpecScaleType.Items.AddRange(Utility.GetListOfSpectrumTypes(signal).ToArray());

cbSpecScaleType.SelectedItem =
Utility.GetSpectrumTypeString(signal.Properties.specType);

}
else
{
cbSpecScaleType.Items.Clear();
cbSpecScaleType.Enabled = false;
}
}

}

Elrms

Elpeak
ElUpeakpeak
[EU) s/ Hz
[EU)*/Hz
sqrt([EU)*s/Hz)
sqri[EL}E/Hz)

Reading NVH Test Configuration Parameters

A Noise, Vibration and Harshness (NVH) Parameter Set is a set of parameter keys that a signal
stores information regarding the signal properties, recording properties and testing configuration
parameters. For the list of parameter keys and their descriptions, refer to the Property Glossary
— NVHParameterSset Parameter Keys section.

For the complete list of fields in NVHParameterSet, it is recommended to find these fields in the
File Reader API for CI Measurement Data Class Methods.chm file under ASAM.ODS.NVH ->
NVHParameterSet Class -> NVHParameterSet Fields.

Page 67 of 139

To read the NVH Parameter Set stored in a ATFX file, each signal can get a NVH Test
Configuration Parameter value and type through the Utility GetSignalNVHParameter or
GetSignalProfileOrLimit with a NVHParameterSet parameter key. Most signals share the
same testing configuration parameter values.

The GetSignalNVHParameter returns a list of strings that contains the signal parameter data type
and the parameter value.

For certain signal parameters such as the Test Profile or Channel Limit Profile, the
GetSignalProfileOrLimit method is used to return a 2D list of strings where each list contains a
row of data.

¢ Test Configurations for Random57 [VCS (Random)] ? X
Test profile « RMS(m/s%}: 9.813 Scale RMS

Shaker parameters Toghiag mver 7 Fiz

Test parameters

Pre-test parameters o1

Test profile I —|
0.01 L

RMS limits T
0.001 I

Run schedule 1 Frequency THT]

Limit channels 20 100 1000 2000

pemamannies Tsertrow [Deite ow] [Appenarou]Cierta] |1 - imporareve =] (B =] ¥ o Logtioa _[+]

Miscellaneows

Frequenq« Acceleration Slope nghAhnrt H\ghmarm Lowmarm anAhort
(m/s%/Hz dB/Oct
: oo —
: o e —
Limit Profile For Channel: Ch1
m/s%Hz —— Motching —— Abort | Alarm
—— Profile

0.1

/ \-‘-——_.__________

oo

Frequency (Hz)
20 100 1000 2000
R e —=
| Enable abort limit || Enable alarm limit |«] Enable notching limit |68 Define all limits together
All Limit
Freg (Hz) Notch Acc ((m/s*y/Hz) Enable Alarm (dB) Abort (dB)
20 010461 3]
|
2000 010461 3 &

In order to use the NVHParameterSet Class, users need to import ASAM.ODS.NVH.

There are also additional imports, such as the Common.Spider and EDM.UTils, that will be used
in this section.

using ASAM.ODS.NVH;
using Common.Spider;

using EDM.Utils;

Page 68 of 139

Reading a Signal NVH Parameter Key

ISignal signal = [IRecording object].Signals[@];

string signalParam = signal.GetParameter<string>(NVHParameterSet.testProfile)
string signalParam = signal.GetParameter<string>(NVHParameterSet.fulllLevelElapsed);
string signalParam = signal.GetParameter<string>(NVHParameterSet.sampleRate);

etc.

Reading a Signal NVH Parameter Key Data Type

ISignal signal = [IRecording object].Signals[@];

string sigParamType = sig.GetParameterType(NVHParameterSet.sampleRate);

DT_FLOAT

string sigParamType sig.GetParameterType(NVHParameterSet.fulllLevelElapsed);

DT_DOUBLE

etc.

Reading a List of NVH Parameter Keys Through Utility Class
Given that there is a list of parameters for each signal, it would be better to store the list of
parameters into another list object for the user interface and other means of accessing the data.

The Utility GetListOfNVHParameterSet returns a list of strings with empty headers to easily
look through the list. The list will also have important parameters placed first and then the rest of
the NVHParameterSet keys.

Then, with the same as the previous Reading Signal sections, include the code snippet from
Reading the Signal Properties — Using a List to Store and Recall Signals to read the list of
signals from IRecording.

Utility.GetListOfNVHParameterSet();

var recordingPath = “C:\Sig@el.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))

1bSignalDatalInfo.Items.AddRange(Utility.GetListOfAllSignals(rec).ToArray());
1bSignalParameters.Items.AddRange(Utility.GetListOfNVHParameterSet().ToArray());

if (1bSignalParameters.Items.Count > 0)
1bSignalParameters.SelectedIndex = 0;

Page 69 of 139

Record Information 5ignal Data Information Channel Tabl

[Blockich1) __________[ll## Key Parameters #= __JJ§
Elock{Ch2) _Cl_sample rate

Block{Ch3) _Cl_testMame

Block{Ch4) _Cl_testStatus

Elock({Chs) _Cl_testType

APS[Ch1) _Cl_testRunfolder
APS[Ch2) _Cl_spiderSM

APS{Ch3) _Cl_testStopReason
APS(Ch) _Cl_testSchedule

APS[ChS) _Cl_testProfile

_Cl_testAbortLimit
_Cl_testAlarmLimit
_Cl_testMotchLimit
_Cl_vesLevel
_Cl_fullLevelElapsed
_Cl_remaining
_Cl_controlRMS
_Cl_controlPeak
_Cl_targetRMS
_ClI_targetPeak
_Cl_controlStrategy

Reading a NVH Parameter Key & Type Through Utility Class

Utility.GetSignalProfileOrLimit(ISignal sig, string parameterKey);
Utility.GetSignalNVHParameter(ISignal sig, string parameterKey);

private void ShowParameters(DataGridView grid, ISignal sig, string parameterKey)

{
grid.Rows.Clear();

if (parameterKey == NVHParameterSet.testProfile)
{
foreach (List<string> entry in Utility.GetSignalProfileOrLimit(sig, parameterKey))
{
grid.Rows.Add(entry.ToArray());

}

else if (parameterkey == NVHParameterSet.testAbortLimit ||
parameterKey == NVHParameterSet.testAlarmLimit ||
parameterKey == NVHParameterSet.testNotchLimit)

{
foreach (List<string> entry in Utility.GetSignalProfileOrLimit(sig, parameterKey))

{
grid.Rows.Add(entry.ToArray());

}

}

else

{
List<string> signalParam = Utility.GetSignalNVHParameter(sig, parameterkey);
grid.Rows.Add(signalParam.ToArray());

}

¥

private void BtnSignalParam_Click(object sender, EventArgs e)
{
string parameterKey = 1bSignalParameters.SelectedItem as string;
if (1lbSignalDataInfo.SelectedItem is ISignal signal &&
Istring.IsNullOrEmpty(parameterKey))
{

ShowParameters(dgvSignalDataInfo, signal, parameterKey);

}
}

Page 70 of 139

Record Information Signal Data Information Channel Table Merge Info

IEEETTE - || Data Type Value
Block({Ch2) _Cl_testMame
Black(drive) _Cl_testStatus 5120
APS[Ch1) _Cl_testType
APS[Ch2) _Cl_testRunfolder
APS(drive] _Cl_spidersM
control(f] _Cl_testStopReason
noise(f] _Cl_testSchedule
profileff) _Cl_testProfile
HighAbortif) _CI_testAbartLimit
HighAlarmif) _CI_testAlarmLimit
LowAbort(f) _Cl_testMotchLimit
LowAlarm(f) _Cl_vesLevel
Hif} _Cl_fullLevelElapsed
_Cl_remaining
Cl rontrolRRS

Reading Merged Information

Depending on the ATFX file, it can contain multiple other atfx files. It is still converted into a
singular IRecording object with the RecordingManager OpenRecording. Then the Utility
GetMergelnfo is used to return a 2D list of strings, where each list contains data regarding each

ATFX file channels. It also output an int that is the number of ATFX files in the merged ATFX
file.

The code snippet below shows the extraction and display of data.
Utility.GetMergeInfo(IRecording, out int sigMapCount);

private void ShowMergeInfo(IRecording rec)

{
try
{
dgvMergeInfo.SuspendLayout();
dgvMergeInfo.Rows.Clear();
List<List<string>> mergelnfo = Utility.GetMergeInfo(rec, out int sigMapCount);
if (sigMapCount == 0)
{
dgvMergeInfo.Columns[@].Visible = false;
dgvMergeInfo.Columns[1].Visible = false;
}
else
{
dgvMergeInfo.Columns[@].Visible = true;
dgvMergeInfo.Columns[1].Visible = true;
}
foreach (List<string> merge in mergeInfo)
{
dgvMergeInfo.Rows.Add(merge.ToArray());
}
this.Refresh();
}
finally
{

Page 71 of 139

}

}

dgvMergeInfo.ResumeLayout();
dgvMergeInfo.PerformLayout();

ChUsers\KevinCheng'\Downloads'gps test example'MergedSigd.atfx

Record Information

Signal Data Information

Channel Table Merge Info

Source File E:;er}nel Current File LC:;::MI

chl MergedSigd chl
R_{4499520}_{20... |ch1 MergedSigd cth2
R_{4499520}_{20... |ch2 MergedSigd ch3
R_{4459520}_{20... |ch3 MergedSigd ch4
R_{4499520}_{20... |ch4 MergedSigd ths
RECD041 atfx chl MergedSigd cthe
RECO041.atfx cth2 Mergedsigd ch?
RECO041 atfx ch3 MergedSigd chd
RECO041 atfx chd MergedSigd ch9

Page 72 of 139

ATFX API Method List

The following section is a short preview of the various classes and interfaces in the API. For a
more detailed view, please refer to the File Reader API for Cl Measurement Data Class
Methods.chm file.

List of Available Modules

Module Descriptions ‘

Recording Manager Provide methods to manage/operate Recording Objects, e.g.
open or close Recording Objects

ODS Recording Provide methods to access properties of Recording Objects

ODS Signal Provide methods to access properties of Signal Objects

DateTimeNano Provide methods to create a DateTimeNano object with
similarities to DateTime but with more accuracy up to
nanoseconds.

Utility Provide methods to easily get data from the ATFX file

without having to understand the complexity of ASAM ODS
source code

Recording Objects refer to files recorded/saved in EDM.
Signal Objects refer to signals included in recording objects.

Recording Manager Module

Name to Be Called Type Descriptions
OpenRecording Method Open the file
CloseRecording Method Close the file

1. OpenRecording
a. Description
Find and open the file based on the given file path. An IRecording object and the result
are returned.

Parameters Type Description

recordingPath String The path where the file is located.

recording IRecording The variable which the returned object is
store to.

Page 73 of 139

b. Return

Type Description ‘
bool true: the file is loaded

false: failed to load the file
Example:

var recordingPath = @"C:\REC@®L.atfx";
if(RecordingManager.Manager.0OpenRecording(recordingPath,out var rec))

{

Console.WriteLine("Recording opened™);

}

2. CloseRecording
a. Description

Find and close the file based on the given file path. The result is returned.

Parameters Type Description ‘
‘ recordingPath ‘ string ‘ The path where the file is located. ‘
b. Return
Type Description ‘
bool true: the file is closed
false: failed to close the file
Example:

var recordingPath = @"C:\REC@®L.atfx";
if(RecordingManager.Manager.CloseRecording(recordingPath))

{

Console.WriteLine("Recording closed™);

}

ODS Recording Module

Name to Be Called Type Description ‘
RecordingProperty Property Properties of the file
Signals Property Signals included in the file

Page 74 of 139

ODSlnstance Property ODS instances included in the file
The IRecording object can be converted to ODSRecording object before accessing its properties.

1) RecordingProperty
a. Descriptions
RecordingProperty contains properties of the file (the Recording object), listed below:

Attribute Name Descriptions

User The EDM account name when the file was
created.

Instruments The product name used to record/save data to the
file.

TestNote Test notes given by the user before the test ran

Name File Name

RecordingPath File Path

Version EDM version number when the file was created.

CreateTime This parameter defines when the signal was

recorded. It is not when the file is saved. This
parameter can show the time accuracy as high as
second. To obtain the starting recording time with
better accuracy, please add
“NanoSecondElapsed” in integer that represents
the additional nanoseconds elapsed.

MasterSN Serial number of the master module of the system
when the file was created
UserAnnotation Annotation added by the user
MeasurementType Measurement type of the file
Example:

var recordingPath = @"C:\REC@®1.atfx";
if(RecordingManager.Manager.OpenRecording(recordingPath,out var rec))
{

Console.WriteLine(rec.RecordingProperty.User);

Console.WriteLine(rec.RecordingProperty.Instruments);

//can list more recording properties

Page 75 of 139

2) Signals
a. Descriptions
It returns the list of signals saved in the file. Each signal can be accessed by the ODS
Signal module.

Example:

var recordingPath = @"C:\RECe@l.atfx";
if(RecordingManager.Manager.OpenRecording(recordingPath,out var rec))

{
foreach(var signal in rec.Signals)
{
Console.WriteLine($"{signal.Name}-{signal.Type}");
}
3

3) ODSlnstance
3.1 Descriptions

The ODSlInstance attribute can be accessed only after the IRecording object returned by
the Recording Manager module is converted to ODSRecording object.

Each ODS attributes can be accessed through the ODSInstance attribute, e.g.
ODSlInstance.Measurement.Equipments return the list of EquipmentPart, which
corresponds to an input channel.

Example:

var recordingPath = @"C:\REC@@1.atfx";
if(RecordingManager.Manager.OpenRecording(recordingPath,out var rec) & rec is ODSRecording odsRec)
{

//get measurement

var measurement = odsRec.0DSInstance.Measurement;

//get all ods parameter set

var parameters = odsRec.0DSInstance.ParamSets;

//get equipments

var equipments = odsRec.0DSIntance.Environment.Equipments

//get more ODS instance

ODS Signal Module

Name to Be Called Type Descriptions ‘
Name Attirbute Signal Name
Type Attirbute Signal type, time/frequency domain

Page 76 of 139

FrameCount Attirbute Total number of frames in the signal

FrameSize Attirbute Size of each frame

UnitX Attirbute Unit of X-axis

UnitY Attirbute Unit of Y-axis

Properties Attirbute Signal properties. Different signal types have

different properties
GetFrame Method Return data of the specified frame of the signal

A snapshot of measurement data consisting of X,
Y and sometimes Z values.

GetParameter<T> Method Return the specified parameter by the given
name.

GetParameterType Method Return the specified parameter data type by the
given name.

1. Properties
a. Descriptions
Time domain and frequency domain signals have different signal properties.

For time domian signals, Properties refer to SignalProperties.
For frequency domian signals, Properties refer to FrequencyDomainSignalProperties.

Example:

var recordingPath = @"C:\REC@@1l.atfx";
if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{
foreach (var signal in rec.Signals)
{
if (signal.Type == SignalType.Time)
{
Console.WriteLine(signal.Properties.BlockSize);
}
else if (signal.Type == SignalType.Frequency
&% signal.Properties is FrequencyDomainSignalProperties fregProps)
{
Console.Writeline(freqProps.SpectrumAveragetMode);
}
}
}
2. GetFrame

a. Descriptions
Return data of the specified frame of the signal

Page 77 of 139

Parameters Type Descriptions

framelndex int Index of the frame
b. Return

Type Descriptions

double[][] Signal data

double[0] contains values of X-axis
double[1] contains values of Y-axis
double[2] contains values of Z-axis (if available)

Example:

var recordingPath = @"C:\REC@81.atfx";
if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))
{

foreach (var signal in rec.Signals)

{
if (signal.Type == SignalType.Frequency)

{
for(var index = @;index< (int)signal.FrameCount;index++)
{
var frameData = signal.GetFrame(index);
Console.WriteLine($"X value length:{frameData[@].Length}");
Console.WriteLine($"Y value length:{frameData[1].Length}");
Console.WriteLine($"Z value length:{frameData[2].Length}");
}
}

3. GetParameter<T>
a. Descriptions
Search through all ODS parameters for the one including the keyword (parameterKey). It
will be returned if found.

Parameters Type Descriptions

T Parameter type Specifies the type of the
object* to be returned

parameterKey string Keyword of the object* to be
returned

*An object refers to an ODS parameter of the signal.

Page 78 of 139

b. Return

Type Descriptions

T The type of the returned object* is determined by the object*
found in ODS parameters. If it is not found according to the
keyword, the original type is returned.

*An object refers to an ODS parameter of the signal.

Example:

var recordingPath = @"C:\REC@@1.atfx";
if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{
foreach (var signal in rec.Signals)
{
var samplingRate = signal.GetParameter<double>(NVHParameterSet.samplingRate);
Console.WriteLine(samplingRate);
var testName = signal.GetParameter<string>(NvHParameterset.testiame);
Cconsole.uWrite(testname);
}
¥

DateTimeNano Module

Constructors Descriptions ‘

DateTimeNano(DateTime, uint) Using this Constructor with a
IRecording.RecordingProperty.CreateTime and a
NVHMeasurement.NanoSecondElapsed will create a
DateTimeNano object that contains a DateTime with
ms_us_ns.

Example:
var recordingPath = @”C:\REC@@1.atfx”;

if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new DateTimeNano(Utils.GetUTCTime
(nvhRec.RecordingProperty.CreateTime, null), nvhMeasurement.NanoSecondElapsed);

}

Page 79 of 139

Name to Be Called Type Descriptions

IsNanoTime bool Gets whether ms_us_ns exists / not equal to zero
TotalNanoSeconds ulong Get TotalSeconds in Nano Seconds
ToNanoString string Gets a string in the format of "DateTime

Milisecond.Microsecond.Nanosecond"

ms_us_ns uint We use this NanoSeconds==0 Distinguish
between normal time and nanosecond time

Milisecond.Microsecond.Nanosecond
000/000/000

Example:
var recordingPath = @”C:\REC@@1.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))
{
ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;
NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new
DateTimeNano(nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime),
nvhMeasurement.NanoSecondElapsed);

Console.WriteLine(createTimeUTC.IsNanoTime);
Console.WriteLine(createTimeUTC.ms_us_ns);
Console.WriteLine(createTimeUTC.TotalNanoSeconds);

Console.WriteLine(createTimeUTC.ToNanoString());

Utility Module

Name to Be Called Type Descriptions

GetListOfAllRecordings Method Takes in a IRecording and returns a
List<string> that contains all available
recordings in a ATFX file.

GetListOfAllSignals Method Takes in a IRecording and returns a
List<string> that contains all available
signals in a ATFX file.

GetListOfNVHParameterSet Method Returns a List<string> that contains all
available NVHParameterSet keys and some

Page 80 of 139

empty header strings for categories and
easier to look through.

GetListOfProperties Method Takes in an object and bool and returns a
2D List<string> where each list contains
the property name and property value.

GetChannelTable Method Takes in a IRecording and returns a 2D
List<string> where each list contains a
channel row.

GetSignalNVHParameter Method Takes in a ISignal and string and returns a

List<string> that contains the parameter
data type and parameter value.

GetSignalProfileOrLimit Method Takes in a ISignal and string and returns a
2D List<string> where each list contains a
row of a test profile.

GetMergelnfo Method Takes in a IRecording and returns an int
count of how many ATFX files in the
merged ATFX file. And a 2D List<string>
where each list contains data regarding
each ATFX file channel.

GetListOfSpectrumTypes Method Takes in a ISignal and returns a list of
strings of spectrum type names depending
on the signal NVH type.

GetSpectrumType Method = Takes in a string that is the spectrum type
name and returns the equlivant enum
_SpectrumScalingType.

GetSpectrumTypeString Method Takes ina _SpectrumScalingType and
returns the equlivant string spectrum type
name.

GetSignalQuantityEngiUnitStrings Method = Takes in a ISignal and returns a string array
that contain engineering units of a signal
quantity.

Property Glossary
The following properties and methods can be found in the chm file and are listed here for a
quicker reference and to highlight the most important properties and methods for the ATFX API.

RecordingPropert
Property Type Description

CreateTime DateTime This parameter defines when the signal
was recorded. It is not when the file is
saved. This parameter can show the

Page 81 of 139

DeviceSNs
Instruments
MasterSN

MeasurementType
Name

RecordingPath
RecordingTypeName

TestNote

Type

User

UserAnnotation

Version

SignalProperties
Property

BlockSize

DeviceSN

Duration

GeneratedTime

string

string

uint32

MeasurementConfigType
string
string

string

string

RecordingType

string

string

Version

Type
uint64

string

string

DateTimeNano

time accuracy as high as second. To
obtain the starting recording time with
better accuracy, please add
“NanoSecondElapsed” in integer that
represents the additional nanoseconds
elapsed.

Serial numbers of the 1 or many
modules used in the recording

The product name used to record/save
data to the file.

Serial number of the master module of
the system when the file was created

Measurement type of the file
File Name
File Path

Recording Type Name based on its file
extension

Test notes given by the user before the
test ran

The type of recording based on its file
extension

Ex. ATFX, GPS, TS

The EDM account name when the file
was created.

Annotation added by the user

EDM version number when the file
was created.

Description

Number of time data points captured in
the signal

The recording instrument serial
numbers

Amount of time covered by the signal

The time when the data is saved

Page 82 of 139

Instruments
IsVCSSignal

MeasurementType

NvhType

RecordingProperties

SamplingRate

SignalName
SignalType
SoftwareVersion

UnitX
UnitY
UnitZ

string The recording instruments used in
measurement

bool Determines if VCS Signal from
Random, Sine, Shock, or TWR

MeasurementConfigType Measurement type of the signal

_NVHType The Noise, Vibration, and Harshness

RecordingProperty

string

string
SignalType
Version

string
string

string

Type of the signal
The recording property of the signal

Number of data samples acquired per
second

Signal Name
Signal type, time/frequency domain

The software version of the recording
instrument when the data is saved

Engineering Unit of X-axis
Engineering Unit of Y-axis

Engineering Unit of Z-axis

NVHParameterSet Parameter Keys
The following property list deprived from the 1Signal GetParameter<T> and GetParameterType
where the methods gets the the value and data type of each parameter key.

Parameter Key

abortSensitivity

average

averageMode

averageNumber

bandWidth
blockT
blockTSize
controlPeak

controlRMS

Type
float

long

long
long

float
float
string
double
double

Description

Defines the threshold for when an abort is called,
based on several independent criteria

Number of blocks that are averaged for the control
spectrum

The method of averaging tests over blocks

The number of blocks that are ensemble averaged for
the signal spectrum

Bandwidth of the proportional filter

Duration of time for the block

Duration of time for the block over block size
Control peak (m/s2) when data saved

Current control RMS (m/s2) when data saved

Page 83 of 139

controlstrategy string Determines whether one or multiple control channels
are used, and how the composite control signal is

generated

currentFrequency float Current frequency when data saved (Sine)

deltaF double Delta Frequency

deltaFreq string Known as the frequency resolution, this sets the
spacing between spectral frequency lines

deltaT float Delta Time

displacementPkPk double Displacement peak peak (m) when data saved

DOF long Degree Of Freedom

driveLimit float Limits the absolute maximum voltage output of the
drive signal during the schedule test

drivePK double Current drive peak (voltage) when data saved

fftAverageOnoff long Whether the test uses FFT average or not

filterType long Determine how the filter bandwidth is changing and
the bandwidth

frequencyRange double The maximum frequency resolved by the FFT
transform by adjusting the sample rate

fulllevelElapsed double Time since full level has elapsed in seconds
Ex. 636.2

highRPM float High end of RPM

initialbDrive float The initial peak voltage of the drive signal that is set
before it ramps up

intervalBetweenPulses double The time period between successive pulses

lines string Number of spectral lines, proportional to block size

1owRPM float Low end of RPM

maximumDrive double A safety limit set to protect the shaker during sine
ramping up and pre-test process

measureStrategy string Defines how the sine waves are measured

overlapRatio string Determines what proportion of each time block is
overlapped with the previous block when calculated
the FFT

remaining double Time remaining in test schedule in seconds
Ex. 299

sampleRate float Number of data samples acquired per second

Page 84 of 139

sigmaClipping

signalPlotPoints

spidersSN

spiderSystem

sweepCount

sweepType

targetPeak
targetRMS
testAbortLimit
testAlarmLimit

testLastRunTime

testLastSavedTime

testName

testNotchLimit

testProfile

testSchedule

testStatus

testType

float

long

string

string

long

string

double
double
string
string

string

string

string

string

string

string

string

string

Ex. 5120

Limits the peaks of the output voltage distribution

based on a factor of Sigma

The number of frequency lines of the displaying

spectrum

The recording device serial number

Ex. “2590976”

The recording instrument system configuration

Ex. “SYS 2590976~

The test amount of times for sweep (Sine)

Determine how the signal plot points are distributed

across the frequency axis

Target peak (m/s2) when data saved
Target RMS (m/s2) when data saved

The test abort limit profile
The test alarm limit profile
Last run time of the test
Ex. “03/07/2022 15:12:00”
Last saved time of the test
Ex. “03/07/2022 15:23:19”
The test name

Ex. “Random34”, “Shock1”
The test notch limit profile
The test profile

The test event schedule

Ex.

Loop number: 1
Level 25.00%, duration 00:00:10

duratien 0
duration ¢
00%, duration

My Report (Create Report) 2

The test status

Ex. “Running”, “Stopped”
The test type

Page 85 of 139

totalElapsed

velocityPk

AoEnvironment
Property

TimeZone

Method
GetLocalTime

GetUTCTime

NVHMeasurement

Property
Altitude

GPSEnabled
Latitude

Longitude
MeasurementBegin
MeasurementEnd

NanoSecondElapsed

Ex. “VCS_Random”

double Total elapsed time when data saved (time in
Random/Sine/TDR, pulses in Shock system)

double Velocity peak (m/s) when data saved

Type Description

string The local timezone of where the recording
instrument is
Examples: "UTC-07:00","UTC+05:45"
Timezones are additional information, they
do not change time values.

Return Type Description

DateTime Get time in local format
Ex. 3/18/2022 6:46:32 PM

DateTime Get time in UTC format
Ex. 3/18/2022 2:46:32 PM

Type Description

double The measurement of altitude according to the
device position

bool Determines whether GPS location is on or
off

double The measurement of latitude according to the
device position

double The measurement of longitude according to
the device position

DateTime The begin time of the measurement when the
data is measured

DateTime The end time of the measurement when the
data is measured

uint32 The total elapsed time in nano seconds since

measurement begin. This parameter can be
used together with CreateTime to construct a

Page 86 of 139

NVHEnNvironment
Property Type

TimeZone string

InstruSoftwareVersion string

HardwareVersion string
FirmwareVersion string
BitVersion string

complete recording starting time that has a
format of:

yyyy/mm/dd/hh/ss/ms/us/ns

Description

The local timezone of where the recording
instrument is

Examples: "UTC-07:00","UTC+05:45"
Timezones are additional information, they
do not change time values.

The software version of the recording
instrument when the data is saved

The hardware version of the recording
instrument when the data is saved

The firmware version of the recording
instrument when the data is saved

The bit version of the recording instrument
when the data is saved

Page 87 of 139

ATFX API Coding Languages

The ATFX API have C# DLL files that are used with the C# language, but there are ways to use
the DLL files for other languages such as Python, LabVIEW and Matlab. The following section
will demostrate how to import the DLL files and how to call the methods and properties.

C# Demo Program

This is a demo program that demonstrates the API with a user interface that opens and displays
the data stored in a ATFX file for the user to see. Instructions to how to import the DLL files and
how to call the methods and properties are listed in the AP C# Demo Examples.

Upon launching the demo program, click Open to select a ATFX file and the program will
display the stored data.

85 ATFX Reader Deme — O x

| | [Coeen]| DEEN [NEGSH

Record Information Signal Data Information Channel Table Merge Info

Property Value

Show Recording Property | | Extract DateTi Data in UTC | | Exiract DateTi Data in Local

Page 88 of 139

ol ATFX Reader Demo - O ®

| | [omen | [[Sset]

Record Information Signal Data Information Channel Table Merge Info

Property Value

Show Basic Signal Info_| | Show Advance Signal Info | | Shaw Signal Frame Data | | Show Signal Parameters | | Show GeneratedTime | Export CSV
x
» EDM » test » Random33 » Runl10 Mar 07, 2022 15-11-58 ~ [S Search Run10 Mar 07, 2022 1...
- M @
.
Mame Date modified Type Size
@ SIG0010.atfx 3/7/2022 3:23 PM ASAM Transport F... 282 KB
G TimeHistory0128.atfx 3/7/2022 3:23 PM ASAM Transport F... T2 KB
- | | ATFX file (*atf) ~|
| Open | | Cancel |

Page 89 of 139

o2 ATFX Reader Demo

ChUsers\KevinCheng\Downloads\gps test example\Run10 Mar 07, 2022 15-11-58\51G0010.atfx

Record Information Signal Data Information Channel Table Mer.

EDM.Recording ODSNVHATFX

ge Info

Property Value
Admin

Instruments Spider
TestMote Random55/Runid
MName SIGOO10

RecordingPath

ChUsers\KevinCheng\Downloa...

Type

ODS_ATF XML

RecordingTypeMame

ASAM ODS5 Format - XML

Wersion 10.0.8.30
DeviceSMs 2390976
Mastersh 2590976
UserAnnotation Random55/Runid
MeasurementType VC5_Random
Time Zone UTC-05:00

Created Time [Local)

3/7/2022 3:23:19 PM

Created Time [UTC)

3/7/2022 8:23:19 PM

The below images show the various type of data stored in a ATFX file:

1) Record Information — Contains information regarding data format, the EDM
version, spider device and so on.

Record Information Signal Data Information Channel Table Merge

EDM.Recording. ODSHNVHAT

Info
Property Value
Instruments Spider
TestMote Random55/Runi0
Mame SIGOO10

RecordingPath

Ch\Users\KevinCheng'\Downloa...

Type

OD5_ATF_XML

RecordingTypeMame

ASAM ODS Format - XML

Version 10.0.8.30
DeviceSMs 2590976
MastersM 2590976
UserAnnotation Random55/Runi0
MeasurementType VCS5_Random
Time Zone UTC-05:00

Created Time [Local)

3/7/2022 3:23:19 PM

Created Time [UTC)

3/7/2022 8:23:19 PM

2) DateTimeNano Data — Contains infromation regarding the recording create time

and nanoseconds

Page 90 of 139

Record Information Signal Data Information Channel Table Merge Info

EDM.Recording.TimRecor b Value
2022
Month 4
Day 18
Hour 22
Minute 47
Second 10
Millisecond 0
IsManoTime True
ManoSeconds 629999333
TotalManosec 82030629999338
Date Time 4/18/2022 10:47:10 PM
TimeOfDay 224710
ToManoString() 4/18/2022 10:47:10 PM.629,5999....
Custom Format: yyyy/mm/dd/hh... | 2022/4/18/22/47/10/629/999/338

3) Signal Basic Information — Contains information regarding each signal properties,
such as engineering units, signal block size, type and so on.

Record Information 5ignal Data Information Channel Table Merge Info

) Property Value
Block(drive) Random55/Runid
APS[Ch1)

APS(Ch2) MeasurementType VCS_Random
AP5(drive) SignalType Time
cantrol(f]
noise(f) GeneratedTime 3/7/2022 3:23:19 PM
profile(f] .
HighAbortif) SamplingRate 512 kHz
HighAlarm(f) BlockSize 1024
LowAbort(f)
Lowdlarmif) FrameCount 1
H
0 Duration 0.2 (5]
UnitX 5
Unity m/s*
UnitZ M/A
Instruments Spider
DeviceSN 2590976
SoftwareVersion 10.0.8.30
MvhType MonEquidistant
AcquisitionCalculateMeth... | Undefined
1sVC5Signal True
IsLocalRecordSignal False

4) Signal Advanced Information — Contains more in-depth data values and properties
of each signal.

Page 91 of 139

Record Information 5ignal Data Information Channel Table Merge Info

Block(Chz)
Block{drive)
APS[Ch1)
APS[Ch2)
APS[drive)
contraol(f}
noise(f]
profile(f])
HighAbort(f)
HighAlarmif)
LowAbort(f)
LowAlarm(f}
Hif)

Property Value
testlastSavedTime 3/7/2022 3:23:19 PM
testlastRunTime 3/7/2022 3:12:00 PM
level 1
drivePK 0.395702868700027
controlRMS 9.74654433795166
targetRMS 9.8128662109375
controlPeak o
targetPeak o
fullLevelElapsed 636.200012207031
remaining 299.075012207031
totalElapsed 675.049337792969
velocityPk 0.0252673029899597
displacementPkPk 0.000182511343155056
pulseWidth [i]

DOF 32
currentFrequency o
totalCycle (1]
remainingCycle (1]
sweepType (1]

5) Signal Data — Contains the signal frame data. There may be a chance that the data
displayed in the ATFX API is different from what is displayed on EDM. This is due
to the spectrum type being a display parameter and not saved in the ATFX file, thus
it will default to EUrms?.

Record Information 5ignal Data Information

Elock(Ch2)
Block(Ch3)
Elock(Chd)
Block(Ch5)
Block(Ch6)
APS[Ch1)
APS[Ch2)
APS(Ch3)
APS[Chd)
APS(ChS)
APS(ChE)
H(Ch2,Ch1)
COH(Ch2,Ch1)
H(Ch3,Ch1)
COH(Ch3,Ch1)
H(Ch4,Ch1)
COH(Ch4,Ch1)
HICh5,Ch1)
COH(ChS5,Ch1)
H{Ch&,Ch)
COH(ChE,Ch1)

Channel Table

Merge Info

¥ Data-Time (s) ¥ Data-V
_ 0.000174045577296056
3.12500014842954E-05 0.000166893019923009
6.25000029685%08E-05 0.000169277205714025
9,37500044528862E-05 0.000169277205714025
0.000125000005937182 0.000174045577296056
0.000156250007421477 0.000174045577296056
0.000187500008505772 0.000166893019923009
0.000218750010390068 0.000164508834131993
0.000250000011874363 0.000169277205714025
0.000281250013358659 0.000174045577296056
0.000312500014842954 0.000174045577296056
0.000343750016327249 0.000166893019923009
0.000375000017811545 0.000169277205714025
0.00040625001929554 0.000169277205714025
0.000437500020780136 0.000169277205714025
0.000468750022264431 0.000174045577296056
0.000500000023748726 0.000174045577296056
0.000531250025233022 0.000174045577296056
0.000562500026717317 0.000169277205714025
0.000593750028201613 0.00017166139150504
0.000625000029685908 0.00017166139150504
Change how the signal frame data is read.
This does not change the values inside the ATFX file,

(EUrms)*

i —

Page 92 of 139

Record Information

6) Signal Parameters — Contains a list of signal properties with the properties’ names
and the properties’ values that users can call in custom programs.

Record Information Signal Data Information Channel Table Merge Info

N E T ~ || Data Type
Blod 12} _Cl_testMame
Blockdrive) _CI_testStatus DT_FLOAT
APS(Ch1) “Cl_testType
APS[Ch2) _Cl_testRunfolder
APS(drive] _Cl_spidersM
control(f] _Cl_testStopReason
noise(f] _Cl_testSchedule
profile(f) _Cl_testProfile
HighAbart{f] _Cl_testAbartLimit
Highalarmi(f) _Cl_testAlarmLimit
LowAbort(f) _Cl_testMotchLimit
LowAlarmif) _Cl_veslevel
HIf} _Cl_fullLevelElapsed
_Cl_remaining
_Cl_controlRMS
Cl controlPeak

Value

7) Signal Generate Time — Contains more advance information regarding a signal or
atfx file generated time.

Record Information

B

hj

Block(Ch2)
Elock(drive)
APS[Ch1)
APS[Ch2)
APS[drive)
control(f]
noise(f]
profileff)
HighAbortif)
HighAlarmif]
LowAbort(f]
LoweAlarmif]
Hif]

Signal Data Information

Channel Table Merge Info

Property Value
C—
Month 3

Day 7

Hour 15
Minute 23
Second 19
Millisecond o
TimeOfDay 15:23:19
IsManaTime False
TotalManosec 55399000000000

8) Channel Table — Contains information regarding the signal test’s input channel

Signal Data Information

table.

Channel Table Merge Info

Channel

Measurement

. Engineering . Max, sensar " Control

Location 1D Type Quantity Unit Sensitivity Input Mode Input Range Sensor SN range Intergration Weighti
Cantrol Acceleration m/s* 10.19716(mv/m/s%) | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch2 Monitor Acceleration m/s* 10.19716(mu/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch3 Off Acceleration mys* 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Ch4 Off Acceleration mys? 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Chs Off Acceleration m/s? 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
Che Off Acceleration mys 10.19716(my/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1
ch7 Off Acceleration m/s 10.19716(mu/m/s%) | AC_SingleEnd AutoRange 20 Mo Integration 1
Cha Off Acceleration mys? 10.19716(mv/m/s% | AC_SingleEnd AutoRange 20 Mo Integration 1

9) Merge Information — Contains information about mutiple other atfx files if the file

is merged.

Page 93 of 139

ChUsersiKevinCheng\Downloads\gps test example'\MergedSig2.atfx

Record Information Signal Data Information Channel Table Merge Info

. Channel) Channel
Source File Label Current File Label

{4499520}_REC {... Edll Mergedsig2 chil
REC5238.atfx chi MergedS5ig2 ch2

Python Demo Script

Importing C# DLL files

In order to import C# DLL to be used in python, users will have to download a package called
Python.NET. There are other packages that can also import C# related libraries, such as
IronPython.

https://github.com/pythonnet/pythonnet

pip install pythonnet

There are 2 additional packages that the python demo scripts used to plot out the signal frame
data and easily convert a C# array to a Python array, Matplotlib and Numpy.

pip install matplotlib
pip install numpy

If for some reason the install command returns a fatal error in launcher unable to create process
using ‘"’ then adding python -m to the pip install will work around the issue.

After installing the packages, users can now import .NET Common Language Runtime, add
references to the ATFX API DLL files and import them to the python script. The following code
snippet below shows the importation of the ATFX API DLL files.

#---Pythonnet clr import

import clr

Change file path here to whereever the DLL files are

parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Ling")
clr.AddReference('System.Collections"')

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dll imports
from EDM.Recording import *

from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

Page 94 of 139

https://github.com/pythonnet/pythonnet

from EDM.Utils import *

from Common import *

from Common import _SpectrumScalingType
from Common.Spider import *

from System import *

from System.Diagnostics import *

from System.Reflection import *

from System.Text import *

from System.IO import *

Then users can call any methods and properties from the DLL files and use them accordingly.

Python Script Code Example
An example below shows how to open a recording and show its recording properties, GPS info
and one of its signal properties.

#---Functions
def ShowGPSInfo(recordingPath):
recording = ODSNVHATFXMLRecording(recordingPath)

if type(recording) is ODSNVHATFXMLRecording:

nvhRec = recording

nvhMeasurement = nvhRec.Measurement

nvhEnvironment = nvhRec.Environment

bGPS = nvhMeasurement.GPSEnabled

if bGPS:
print("GPS Enabled: ", bGPS)
print("Longitude: ", nvhMeasurement.Longitude)
print("Latitude: ", nvhMeasurement.Latitude)
print("Altitude: ", nvhMeasurement.Altitude)
print("Nanoseconds Elapsed: ", nvhMeasurement.NanoSecondElapsed)

if not String.IsNullOrEmpty(nvhEnvironment.TimeZoneString):
print("Time Zone: ", nvhEnvironment.TimeZoneString)

print("Created Time (Local): ", nvhRec.RecordingProperty.CreateTime)
print("Created Time (UTC): ",
Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, None))

#---Main Code
print("Running Main Code")

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"

ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording

recordingPathTS = recordingPath + "{4499520} REC_{20220419}(1).atfx"

#OpenRecording(string, out IRecording)

dummy data is required for the OpenRecording for it to correctly output data

Make sure to reference the correct file string

dummyTestl, recording = RecordingManager.Manager.OpenRecording(recordingPathTS, None)

print("\nRecording Properties\n")
for prop in Utility.GetListOfProperties(recording.RecordingProperty):

Page 95 of 139

print(prop[@], prop[1])

print("\nRecording GPS Properties\n")
ShowGPSInfo(recordingPathTsS)

print("\nSignal 1 Properties\n")
for prop in Utility.GetListOfProperties(recording.Signals[@].Properties):
print(prop[@], prop[1])

print("\nSignal 1 Properties GeneratedTime\n")
for prop in Utility.GetListOfProperties(recording.Signals[@].Properties.GeneratedTime):

print(prop[@], prop[1])

Example Print Statements

Running Main Code

Recording Properties

User Unknown Owner

Instruments GRS

TestNote Untitled Test Note

RecordingName {4499520} REC {20220419}(1)

RecordingPath C:\Users\KevinCheng\Downloads\gps test
example\{4499520} REC {20220419}(1).atfx

RecordingType ODS_ATF_XML
RecordingTypeName ASAM ODS Format - XML
SavingVersion 10.0.8.34

DeviceSNs 4499520

MasterSN 4499520

MeasurementType None

Recording GPS Properties

GPS Enabled: True

Longitude: 0.0

Latitude: 37.38046

Altitude: 12.42

Nanoseconds Elapsed: 629999338

Page 96 of 139

Time Zone: Eastern Standard Time;-300;(UTC-05:00) Eastern Time (US & Canada);Eastern

Standard Time;Eastern Daylight

Time;[01:01:0001;12:31:2006;60;[0;02:00:00;4;1;0;];[0;02:00:00;10;5;0;];][01:01:2007;12:31:

9999;60;[0;02:00:00;3;2;0;];[0;02:00:00;11;1;0;];1;
Created Time (Local): 4/18/2022 2:47:10 PM
Created Time (UTC): 4/18/2022 6:47:10 PM

Signal 1 Properties

MeasurementType None

SignalType Time

GeneratedTime 4/18/2022 2:47:10 PM.629.999.338
SamplingRate 51.20 kHz

BlockSize 1793024

FrameCount 1

Duration 35.02 (s)

UnitX Time (s)

Unity V

UnitZ N/A

Instruments GRS

DeviceSN 4499520

SoftwareVersion 10.0.8.34

NvhType Equidistant
AcquisitionCalculateMethod Undefined
IsVCSSignal False
IsLocalRecordSignal False

Signal 1 Properties GeneratedTime

Year 2022
Month 4
Day 18
Hour 14

Page 97 of 139

Minute 47

Second 10

Millisecond 0

TimeOfDay 14:47:10

IsNanoTime True
TotalNanoSeconds 53230629999338

The python script in the ATFX API package has more examples such as getting a list of signals
and displaying the frame data of 1 signal and getting a list of recordings and displaying each
recording properties.

LabVIEW Demo Script

In order to open and run the provided LabVIEW Demo Script, it is recommended to use
LabVIEW 2021 or 2021 SP1 32-bit version.

Importing C# DLL files
LabView comes with the combatility of importing C# dll files and articles on how to do so.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA039000000Y GggCAG&I=en-US

The ATFX API for LabVIEW comes with an additional DLL file called LabVIEWDotNetAPI
that provides methods and properties to open and read ATFX files in LabVIEW. It is similar to
the C# demo code except encapsulated into a library. Thus if there are additional methods or
properties needed, the customer must send a request to Crystal Instrument software team.

Once the .vi file block diagram is up, users can right click the empty space and locate
Connectivity -> .NET then any of the following nodes.

Page 98 of 139

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US

<21 Functions q Search
Programrming »

=)

Structures Array Cluster, Class, &
Variant
Mumeric Boolean String
Cornparison Waveform Collection
File /0 Timing Dialog & User
Interface
&
b
Synchronization Graphics & Application - H
Sound Control Display
Message to
User
Enable
Report Message
Generation QK b
Measurement /O) {1 Connectivitt {7 .NET
Instrument 1/0 []
Vision and Motion [}
Mathematics [} % @
Signal Processing ¥ Libraries & Constructer Property Node Invoke Mode Close Reference
. Executables Node (.MET) (.MET)
Data Communication [}
T oem B
Control & Simulation (] -
To More Generic To More .NET Object To To NET
Express) Class Specific Class Variant.vi Object.vi
Addons (] ——
2 o

Favorites] E
User Libraries) Python Register Event Unregister For Static VI
Selecta V... Callback Events Reference

If the user selects the Constructor Node and place into the diagram, another window will pop
up for selecting the .NET constructor reference. If the ATFX API dll files are not in the assembly
list, then users can click Browse and add in the dll files.

Assembly
CLATFX Reader{10.0.8.44)

Select the [NET Assembly to Open

:
Objects

* PhaseUnit A

+ PropertiesRequiredHandler

+ PropertyGlobalizedObject

¢ RecordingConstantEnumList

+ RecordingExportArgs

+ RecordingExportedEventHandler
RecordingProperty

*+ RecordingType

*_ShakerShockSianalTvoe

v A | « ATFX Reader

Organize ~

Name Date modified

& CLATFX Reader.dll
& Common.dil
&] LabVIEWDotNetAPLdIl

Constructors

-
RecordingProperty(String recPath)
RecordingProperty(Version ver)

oK Cancel Help

Page 99 of 139

LabVIEW Block Diagram Example

The following shows the block diagram used to open the ATFX file and display its data from the
Examples_ReadATFX.vi file.

([3] "Export’: Mouse Up ~bf
DD
Display
Message to
5 ATFX g T ATX] User
Source [signaiD: | o SianalD 5 b Ensble
Type i ExportSignal] d mg;‘“
Time name =
CilRef > g path
Coords .)
T)
Mods v
Plathlods File Dialog
Signale selected path
b default name
fa[[1] "Signals", "Table Type": Value Change *pf
528
2@ ATRC G B= ATFX gl
—2
Source [SignalD: | 4 SignalDatalnfarmation &
Type t
T‘y:‘e GetTable E LI P r— Signal Info
Table Type - tpe e 4 -
CilRef Signals 1 signal Col 3 H
Oldval olumnCount ¥ o ==
Newval RowCount Y
ColumnHeaderStringsH Signal Info
ColHdrs[]
[[0] "Open': Mouse U !
0] "Open’: Mouse Up bf
Record Information Table
B
WTrue ~Bf
Record Information Table
5
W
ColumnCount__%
RowCommt #—J Record Information Toble
L5 ATFX] 5

Source

Type

Time

CtiRef

Coords

Button

Meds

PlathMods

5+ ATFK 5

fT=__ amx

ColumnHeaderstringsH

RecordinformationTable!

[P —1)
b ColHdrs[]

Signals

Tablelypes b

Signals

Page 100 of 139

The following shows the GUI of the ATFX API LabView Reader and its usage.

) Spider 070414.Ivlib:Examples_ReadATFX.vi
File Edit View Project Operate Tools Window Help

> @n

[Cosen 1 [openiniiors |

Copyright (C) 2022 by Crystal Instruments Corporation. All rights reserved

Users open the file folder icon button to locate a atfx file, then click Open to extract and display

the recording data.

l C\Users\KevinChenghDi

520} REC_{20220419}(1).atfx

Property

Value

User

Unknown Owner

Instruments

GRS

TestMote

Untitled Test MNote

Name

{4499520}_REC_{20220419}(1)

RecordingPath

C:\Users\KevinCheng\D

ple\{4439520) REC_{20220419)(1).atfx

Type

ODS_ATF_XML

RecordingTypeName

ASAM ODS Format - XML

Version

10,0834

DeviceShs

4499520

MastersN

4499520

MeasurementType

None

Page 101 of 139

Here is a display of the signal properties, frame data and generated time data.

Record Information | Signal Data Information |

chl ~ || SignalBasiclnfo ~ Record Information | Signal Data Information |
Property Value chl SignalFrameData Export l
MeasurementType MNone SignalBasiclnfo
SignalType Time ¥ Data-Time (S) SignalAdvancelnfo -V
GeneratedTime 4/18/2022 6:47:10 PM.629.999.338 0 1158913448453
samplingRate 3120 kHz 1,95312495634425E-05 SignalParameters 103662308529019
Blocksize 1733024 3.9062499126885E-05 SignalGeneratedTime 191397332027555
FrameCount ! 5.85037486003275E-05 ~0.00592662308520010
Duration 302 7.812499825377E-05 -0.00392470215633512
UnitX > 9,76562478172125E-05 -0.00391516541317105
Uit v : 0.000117187497380655 -0.0059068207629025
UnitZ N/A 0.000136718746944098 -0.00591158913442453
Instruments GRS 0.00015624999650754 -0.00502112587764859
DeviceSN 4499520 0.000175721246070982 -0.00502589424923062
SeftwareVersion 10.0834 0.000195312495634425 -0.00391874169185758
hvhType Equidistant 0.000214843745197367 -0.00591516541317105
Acqms.ltlonCaIcuIateMethod Undefined 0.00023437499476131 -0.00592827243502 164
IsVCSSignal . False 0,000253906244324752 -0.00392112587764859
IsLocalRecordSignal False 0.000273437493888195 -0.00592112587764859
Record Information Signal Data Information Record Information | Signal Data Information |
SignalFrameData Measured-Nominal ~ | SignalFrameData ~
¥ Data-= ¥ Data-Actual time stamp (s)

Time offset{Measured-Mominal) 0 0

(Measured-Mominal)-Correction 5 5000037183

Stamp Points 10 10.000074366

GPS tracks 15 15.000111549

Longitude o 20 20.000148772

TS 25 25.000185094

Record Information

. Signal Data Information |

chl ~ | | SignalGeneratedTime ~
Property Value
Year 2022
Month 4
Day 18
Hour 18
Minute 47
Second 10
Millisecond 0
TimeQfDay 184710
IsManoTime True
TotalNanosec 67630629999338

Matlab Demo Script

In order to open and run the provided Matlab Demo Script, it is recommended to use Matlab

R2021b or later version.
Importing C# DLL files

In the recent versions of Matlab allow loading DLL files by using NET.addAssembly().

% Load common and reader dll

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\

Common.dll");

Page 102 of 139

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

Matlab Script Code Example
Then users can call any methods and properties similar to C#.

An example below shows how to open a recording and display its recording properties and signal
frame data.

% Create a atfx recording instance

rec =

EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul @1, 2022 11-20-16\SIGROO4.atfx");

% Use item function to get a time signal instance
sig = Item(rec.Signals,9);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{@}",sig.Properties.xUnit));
disp(System.String.Format("Y Unit:{@}",sig.Properties.yuUnit));
disp(System.String.Format("GPS Enable:{0}",rec.Measurement.GPSEnabled));
disp(System.String.Format("Longitude:{0}",rec.Measurement.Longitude));
disp(System.String.Format("Latitude:{0}",rec.Measurement.Latitude));
disp(System.String.Format("Altitude:{0}",rec.Measurement.Altitude));
disp(System.String.Format("Time zone:{0}",rec.Environment.TimeZoneString));
disp(System.String.Format("Created Time
(Local):{@}",rec.RecordingProperty.CreateTime));
disp(System.String.Format("Created Time
(UTC):{@}",Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, [])));
disp(System.String.Format("Nanoseconds
Elapsed:{0}",rec.Measurement.NanoSecondElapsed));

dateTimeNano = Common.DateTimeNano(rec.RecordingProperty.CreateTime,
rec.Measurement.NanoSecondElapsed);
disp(System.String.Format("DateTimeNano Object:{0}",dateTimeNano));

disp("display signal frame data");

% Get signal frame

frame = sig.GetFrame(0);

% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);

% Long format, showing more decimal places
format long;

% Display the cell(frame) content
%celldisp(matFrame);

% Convert back to mat array

xVals = cell2mat(matFrame(1));

yValues = cell2mat(matFrame(2));

%plot the signal

plot(xVals,yValues, 'r');

xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");

Page 103 of 139

title("Plot of the "+string(sig.Name));

legend(string(sig.Name));

Example Output
Name:chl
X Unitc:5
Y Onit:V
GP5 Enable:True
Longitude:0
Latitude:37.38038
Altitude:8.26
Time zone:;UTC-05:00
Created Time (Local):3/23/2022 4:29:41 FM
Created Time (UTC):3/23/2022 8:29:41 PM
Nanoseconds Elapsed:815661371

display signal frame data
>

16l cin
4 Figure 1 — m} X
File Edit View Insert Tools Desktop Window Help o
NEde 2|08 & E
n «105 Plot of the ch1
chi
7]

A n I n n n n I n n

0 0002 0.004 0.006 0.008 001 0012 0.014 0.016 0.018 0.02
Time (S)

Page 104 of 139

Post Analysis Software Integrates ATFX API

The Feature that Utilizes ATFX Reader API in PA Software

The following screenshots of the Post Analysis Software shows a feature that integrates ATFX
Reader API, which reads and shows all the information in atfx files that are created by Crystal
Instruments products. The ATFX Reader API not only can be integrated in software products of
Crystal Instruments, but also can be licensed to users to customize their software.

MergedSig20 Signal Details

Record Information Signal Information Channel Table IMemelnformation |

| Channellabel | Current File | Channel Label
MergedSig20 chl

REC0012.atfx ch1 MergedSig20 ch2

REC0002 Signal Details = [m} X
Record Information | Signal Information Channel Table S
\“m | value
Instruments GRS
i TestNote Default Test
I Name REC0002
| RecordingPath G:\PA Data\GRS Data\0.5.41%(16...
. Type ODS_ATF_XML
T RecordingTypeName vASAM ODS Format - XML
Version A 10.0.8.6
CreateTime 2021/11/23 9:00:50
= DeviceSNs v4499680
= MasterSN 4499680
] MeasurementType None
. FileGUID Ab67a0ec9-e83b-40¢a-a91d-87a7...
GPS Enabled True
Logtitude 106.51478
Latitude ' 29.51742
Altitude 239
StartNanosecond A45714144
-

Page 105 of 139

REC0002 Signal Details

BlockSize

Duration

UnitX

Unity

UnitZ

DeviceSN

NvhType

1sTa

SignalName

SamplingRate

FrameCount

Instruments

IsVCSSignal

SoftwareVersion

AcquisitionCalculateMethod

IsLocalRecordSignal

chl

102.40 kHz
76756992

1

749.58 (s)

S

v

N/A
GRS
4499680
10.0.8.6

Equidistant
Undefined
False

False

REC0002 Signal Details

Record inormation _ Signal information

Channel Table

Ch. | Original sensitivity | Input mode

| Hi-Pass filter | Range

Current sensitivity | Label |

1

2
3
4

1000 mv/(V)

| 1000 my/v)
1000 mv/(V)

1000 mv/(V}

AC-Single End

| AC-Single End
AC-Single End
AC-Single End

1Hz

| 1Hz
1Hz

1Hz

Auto 1000 mv/(V) CH1
| Auto | 1000 mv/v) | cH2
| Auto | 1000 mv/(v) | cH3
Auto 1000 mv/(V) - CcH4

Page 106 of 139

Appendix
Time Domain Signals

Time domain signals displays signal amplitude (y-axis) over a period of time (x-axis). These

types of signals are not affected by changes in spectrum types.

Time Stream

The time stream signals are the raw time waveforms applied to the input channels. They are

displayed with relative time on the Y-axis.

They are a live feed of time data, useful for live monitoring a signal in the time domain. Thus,

Time Stream signals are not saved into the ATFX file.

A Time Stream signal from an EDM VCS Random test:

I
fiony > e
mls"'—"_ch-] % Time (Seconds) g‘]y
b1 163.524 00213
010 2 163.524 00236
3 163.524 .0664
a 163.524 -0.0356
0.08 5 163.525 10,0698
6 163.525 0.0626
0.00 7 163.525 -0,0303
3 163.525 00300
g 163.525 0.0350
-0.05
10 163,526 0.0385
11 163.526 0.0104
- 12 163.526 -0.0127
13 163,526 00250
L L | , Time (ms) 14 163.526 0.0029
E‘ 163524 163550 163600 163650 163724 15 162,526 0.0263
Time Block

Time Blocks are a contiguous segment of time domain data, which can then be transformed into

the frequency domain. The block size is often a power of two.

A Time Block signal from an EDM VCS Random test:

Page 107 of 139

(S1G0000_BlockiCh1)) = | (5160000_Block(Ch)
s — 5IG0000_Block(Ch) 1= XTime (Seconds) | ooer - oKEnY

- B | b1 0,000 24062

2 0,000 9.5401

3 0,000 159234

4 0.001 8.6855

5 0001 14,6054

6 0,001 180108

7 0,001 17649

5 0.001 24258

9 0.002 21,6664

10 0,002 203743

1 0.002 89270

12 002 37052

13 0,002 65185

-0 L | L Time {ms) 14 0,003 -3.5214

E b 50 100 150 200 15 0.003 0.4466

ATFX API C# Demo display

Record Information 5ignal Data Information Channel Table Merge Info

Block(Ch1}

¥ Data-Time (s ¥ Data-m/s*
Block(Ch2)
Block(Ch3) _2,40620851516724
Block(Ch4)
BlockChs) 0.000195312502910383 -8.5400505065918
Block(Ché) 0.000390625005820766 -15.923412322998
Block(Ch7)
Block(Ch) 0.000585937508731149 _8.68952178955078
Block(drive)
APS(Ch1) 0.000781250011641532 14,6953678131104
APS(Ch2) 0.000976562514551915 ~18.0108108520508
APS(Ch3)
APS(Ch4) 0.0011718750174623 1,76490688323975
APS(ChS)
APS(ChE] 0.00136718752037268 4,44573101348877
APS(ChT) 0.00156250002328306 -21.6663951573779
APS(Ch) : :
APS(drive) 0.00175781252619345 _20.8743000030518
contral(f}
naise(f) 0.00195312502910383 _8,92697906494141
profilef] R
HighAborti) 0.00214843753201421 3,70521068572993
HighAlarm(f) 0.0023437500349246 6.51854610443115
LowAbort(f)
LawAlarmif) 0.00253906253783498 23.52138471603394
Hf)
HighAb ortErrar(f) 0.00273437504074536 0.446575313806534

Frequency Domain Signals

Frequency domain signals displays signal amplitude (y-axis) over a frequency range (x-axis).
Frequency domain signals are usually expressed in Hz and calculated from an equivalent "block"
of time domain data (also known as "frame") through mathematical transforms, such as the
Fourier Transform.

Here is a list of frequency signals and their short form:

Frequency Spectrum Full Name EDM / ATFX Spectrum Abbreviation

Auto Power Spectrum APS

Frequency Response Function FRF
H

Fast Fourier Transform FFT

Page 108 of 139

Cross Power Spectrum CPS

Coherence Function COH
Sine Spectrum
Shock Response Spectrum MaxiSRS
PosSRS
NegSRS
Order ORDSpec
Octave OCT

Fast Fourier Transform Spectral Analysis Linear (FFT)

Digital signal processing technology includes FFT based frequency analysis, digital filters and
many other topics. This chapter introduces the FFT based frequency analysis methods that are
widely used in all dynamic signal analyzers. CoCo has fully utilized the FFT frequency analysis
methods and various real time digital filters to analyze the measurement signals.

The Fourier Transform is a transform used to convert quantities from the time domain to the
frequency domain and vice versa, usually derived from the Fourier integral of a periodic function
when the period grows without limit, often expressed as a Fourier transform pair. In the classical
sense, a Fourier transform takes the form of:

X(f) = jmx(t]e_ﬂ“fr dt

where:

X(t) - continuous time waveform
f - frequency variable

J - complex number

X(f) - Fourier transform of x(t)

Mathematically the Fourier Transform is defined for all frequencies from negative to positive
infinity. However, the spectrum is usually symmetric and it is common to only consider the
single-sided spectrum which is the spectrum from zero to positive infinity. For discrete sampled
signals, this can be expressed as:

N-1

X(k) = Z x(n)eI2mkn/N

n=0
where:
x(n) - samples of time waveform

Page 109 of 139

n - running sample index

N - total number of samples or “frame size”

k - finite analysis frequency, corresponding to “FFT bin centers”
X(k) - discrete Fourier transform of x(k)

In most DSA products, a Radix-2 DIF FFT algorithm is used, which requires that the total
number of samples must be a power of 2 (total number of samples in FFT = 2™, where m is an
integer).

Selecting different spectrum types will not affect the FFT spectrum in Real + Imaginary values.

Linear Spectrum

A linear spectrum is the Fourier transform of windowed time domain data. The linear spectrum is
useful for analyzing periodic signals. You can extract the harmonic amplitude by reading the
amplitude values at those harmonic frequencies.

An averaging technique is often used when synchronized triggering is applied. Because the
averaging is taking place in the linear spectrum domain, or equivalently, in the time domain,
based on the principles of linear transform, averaging makes no sense unless a synchronized
trigger is used.

In many DSA products, amplitude correction is automatically applied when
selecting different Spectrum Types.

The linear spectrum is saved internally in the complex data format with real and imaginary parts.
Therefore, you should be able to view the real, imaginary, amplitude, or the phase part of the
spectrum.

An FFT signal from an EDM DSA FFT Analysis test:

(SIGO000_FFT(Ch 1)) * x

[LogMag gal mMSIT T T —— SIGD000_FFT(Ch1) |

SIGO000_FFT{Ch1) RMS: 0.1732 gal {0.00Hz ~ 11250.00Hz)
Save Time: 6/30/2022 4:18:38 PM

0.1

0.01

0.001 |

1.00e-04 |-

100E-05 |

1.00E-06

L L L L Frequency (Hay|
o 2000 4000 6000 8000 11225

Page 110 of 139

(S1G0000_FFTICh 1)) v x [FFTICHTD

ATFX API C# Demo display

The ATFX API will read the FFT in Real & Imaginary values.

Record Information

Signal Data Information

Channel Table Merge Info

FFT(Ch1) Y-Re
[Reat ot ST T T T —— =IG0000_FFT(CHT)] fteauenciticl Real gal (RMS]

[0.00 -0.1908

2 2500 0.0917

005 | 3 50.00 0.0055
4 75.00 -0,0007
5 100.00 -0.0026

i | 6 125.00 0,0036
T 150.00 -0.0036

8 175.00 0.0020
005 | SIGO0D0_FFT(Ch1) RMS- 01733 gal (0 00Hz ~ 11250 00Hz) g] 200.00 -0.0015
Save Time: 6/20/2022 4:18:38 PM - 225.00 0.0007

11 250,00 0.0010
-0.10 4 12 275.00 -0.0006
13 300.00 0.0001

)) \ . . Frequency [Hz) 14 325.00 -0.0011

E 0 100 200 300 400 500 622 15 350.00 0.0008

T
[maginary gat (o) T T T —— SIGO000_FFT(Ch) PR R] Fﬂ;‘fﬂlh}';ﬁ (RMS)

0.0000

0.0041

0.002 B -0.0060

0.0023

-0.0004

o.000 [

0.0007

-0.0007

-0.002 | b 0.0035
-0.0028

SIG0000_FFT(Ch1) RMS: 0.1733 gal (0.00Hz ~ 11250.00Hz) 0.0010

oa0s | Save Time: 6/30/2022 4:18:38 PM | 2.0014
-0.0007

-0.006 0.0007
B)))) . Frequengy (Hz1| -0.0004

@ 0 200 400 600 200 1000 1268 0.0001

Block(Ch1)
Block(Ch2)
Block(Ch3)
Block(Chd)
Block(Ch5)
APS(Ch1)
APS(Ch2)
APS(Ch3)
APS(Ch4)
APS(ChS)
CPS(Ch2,Ch1)
CPS(Ch3,Ch1)
CPS(Chd,Ch1)
CPS(ChS,Ch1)
HICh2,Ch1)
COH(Ch2,Ch1)
H(Ch3,Ch1)
COH(Ch3,Ch1)
H(Ch4,Ch1)
COH(Ch4,Ch1)
H(Ch5,Ch1)
COH(Ch5,Ch1

FFT(Ch2)
FFT(Ch3)
FFT(Chd)
FFT(Ch5)

¥ Data-Frequency [Hz)

¥ Data-Real gal [RMS)

Y data-Imaginary

gal (RMS)
-0.190758779644966 0

25 0.0916295480656624 0.00413563661277294
50 0.00550242513418198 -0.0060243490152061
75 -0.000699079886544496 | 0.00226424890570343
100 -0.00262495945207775 -0.000412846391554922
125 0.00364094506249136 0.000653044378850609
150 -0.00360224535688758 -0.000720723997801542
175 0.00202021608129144 0.0035436199977994
200 -0.00151090265717357 -0.00277522136457264
225 0.00065707485191524 -0.000979538075625896
250 0.00103858741931617 0.00144634069874883
275 -0.000587686372455209 | -0,000658069388009608
300 0.000149876897921786 0.000677179836202413
325 -0.00107129942625761 -0.000395542243495584
350 0.000813271617516875 -0.000147657367051579

Page 111 of 139

Auto Power Spectrum (APS)

Spectral analysis of data has for a long time been popular in characterizing the operation of
mechanical and electrical systems. A type of spectral analysis, the power spectrum (and power
spectral density), is especially popular because a “power” measurement in the frequency domain
is one that engineers readily accept and apply in their solutions to problems. Single channel
measurements (auto-power spectra) and two channel measurements (cross-power spectra) have
both played important roles.

In many DSA products, Power Spectrum Analysis is a general name for computing the
following three spectrum types:

e Power Spectrum: The unit is EU?
e Power Spectrum Density(PSD): The unit is EU%/Hz
e Energy Spectrum Density(ESD): The unit is EU?S/Hz

In power spectrum measurements, window amplitude correction is used to get un-biased final
spectrum readings at specific frequency. In PSD or ESD Spectrum measurements,
window energy correction is always used to get an un-biased spectral density reading.

The magnitude of the frequency components of signals are collectively called the amplitude
spectrum. In many applications, the quantity of interest is the power or the rate of energy transfer
proportional to the squared magnitude of the frequency components. The average squared
magnitudes of all the DFT frequency lines are collectively referred to as the Power Spectrum,
Gxx-

The averaging process is more properly termed an ensemble average, wherein the squared
amplitude from N signal blocks at each measured frequency, f, are averaged together. Letting an
asterisk (*) denote conjugation of a complex number, the “power” averaging process is defined

by:

N
1
Gl = IX(OP =3 Xl DXilf)
k=1

APS signals from an EDM VCS Random test:

Page 112 of 139

(51G0004_APS(Ch1)) ¥ x Q| (S1G0004_APS(Ch1))

Loghtag t/sF 7 H T T = SIGDD04_APS(Ch1) ¥
| LogMag (m/s°)" / Hz —— SIG0004_APS(Ch1) | = ¥ Frequency [Hz) LogMag (/s / Hz
[0.00 7.8282E-007
0.01 - B
2 5.00 1,3633E-006
AETY 3 10.00 1,3915E-006
4 15.00 2,9345E-005
1.00E-04 L - 5 20.00 0.0010
SIG0004_AF S(Chl) RMS: 2.4351 mis® (0.00Hz ~ 2250.00Hz)
Save Time: 71/2022 11:21:23 AM 6 25.00 0.0025
1.00E-05 = 4
7 30.00 0.0014
(o= B i 5 35.00 0.0002
g 40.00 0.0003
1.00E-07 - B 10 45.00 0.0008
11 50.00 0.0062
1.00E-08 |- -
12 55.00 00120
1.00E-09 | i 13 60.00 0.0031
) | Frequency (H7) 14 65.00 0,0067
i 20 100 1000 2000 15 20,00 0.0036

ATFX API C# Demo display

Record Information 5ignal Data Information Channel Table Merge Info

Elock(Ch1) ¥ Data-Frequency (Hz) ¥ Data- (m/s%* / Hz
Black(Ch2)
Black(Ch3) _ 7.32823439549779E-07
Block(Ch4)
BlockiChs) 5 1,36329157056962E-06
Block(Che) 10 1,39148940799857E-06
Block(ChT)
Block(Chg) 15 2,93445093049642E-05
Block(dri

—t 20 0.000992203963082154
APS(ChZ) 25 0,00254793006389318
APS(Ch3)
APS(Chd) 30 0.0014263681910674
APS(ChS
APSEChS} 35 0,000235144435746202
APS(ChT) 40 0.000768744845969525
APS(ChE] :
APS(drive) 45 0.000760798309295638
contralf]
naiseff] 50 0,00622360076380582
profile(f)
Bighabort 55 0.0120123183239822
HighAlarm(f} 60 0,00313115474479721
LowAbart(f)
LowAlarm(f] 65 0.00671789933577523

Spectrum Types
Several Spectrum Types are given for both Linear Spectrum and Power Spectrum measurements
in CoCo and EDM. The concept of spectrum type is explained below in detail.

First let’s consider the signals with periodic nature. These can be the signals measured from a
rotating machine, bearing, gearing, or anything that repeats. In this case we would be interested
in amplitude changes at fundamental frequencies, harmonics or sub-harmonics. In this case, you
can choose a spectrum type of EUpk, EUpkpk O EUrms.

A second scenario might consist of a signal with a random nature that is not necessarily periodic.
It does not have obvious periodicity therefore the frequency analysis could not determine the
“amplitude” at certain frequencies. However, it is possible to measure the r.m.s. level, or power
level, or power density level over certain frequency bands for such random signals. In this case,
you must select one of the spectrum types of EUrms?/Hz, or EUrms/sqrt(Hz), which is called power
spectral density, or root-mean squared density.

Page 113 of 139

A third scenario might consist of a transient signal. It is neither periodic, nor stably random. In
this case, must select a spectrum type as EU2S/Hz, which is called energy spectrum.

In many applications, the nature of the data cannot be easily classified. Care must be taken to
interpret the data when different spectrum types are used. For example, in the environmental
vibration simulation, a typical test uses multiple sine tones on top of random profile, which is
called Sine-on-Random. In this type application, you have to observe the random portion of the
data in the spectrum with EUrms?/Hz and the sine portion of the data with EUpx.

The image below shows a general flow-chart to choose one of the measurement techniques and
spectrum types for linear or auto spectrum:

[Classify the nature of data]

|

Periedic (narrowband) | [Random (broadband) I | Transient (broadband)]
Y Y \J Y Y
> Power RMS Power Energy
Linear Power
Spectrum Spectrum Spectrum
Spegtrum Spsecérqm Density Density
% s SxSXT Sqrt(PSD) SxSXTT
Averaging
Window amplitude comrection Window energy comrection
v l
Select one of the spectrum Y Y
e: EUpk, EUpkpk, EUms, -
;i p?gum-,s)z EUrms*/Hz EUms/sqri(Hz) EUrms’S/Hz

Flow chart to determine measurement technique for various signal types.

The following figures illustrate the results of different measurement techniques on a 1 volt pure
sine tone. The figures include RMS, Peak or Peak-Peak value for the amplitude, or power value
corresponding to its amplitude.

Notice these readings can only be applied to a periodic signal. If you applied these measurement
techniques to a signal with random nature, the spectrum would not be a meaningful
representation of the signal.

It should also be noted that since a window is applied in time domain, which corresponds a
convolution in the linear spectrum, we cannot have both a valid amplitude and correct energy
correction at the same time. Use the flow chart to select appropriate spectrum types.

In a Linear Spectrum measurement, a signal is saved in its complex data format which includes
both real and imaginary data. Then is averaging operation applied to the linear spectrum.

Page 114 of 139

In a Power Spectrum measurement, the averaging operation is applied to the squared spectrum,
which has only real part. Because of different averaging techniques, the final results of Linear
Spectrum and Power Spectrum will be different even though the same spectrum type is used.

Spectrum Types selection only applies to Power Spectrum and Linear Spectrum signals.
Spectrum Types do not apply to transfer functions, phase functions or coherence functions.

EUok or EUpkpk

The EUpk and EUpipk displays the peak value or peak-peak value of a periodic frequency

component at a discrete frequency. These two spectrum types are suitable for narrowband
signals.

1200 T T T T
1.000 - ;-:HL“Y‘ A sne wave with 1Vpk 1
{ \ displayed in EUpk. Hann
2 a0l l' \ wndow spphed |
'g 'I |!
€ om0+ LP i -
s { r
= [
3 0400 ‘ | fl
|II lll
0200 + @ v E
P m 4 h 4 4
$950.000 1000.000 1050.000 1100.000
Frequency (Hz)

A sine wave is measured with EUpk spectrum unit. The sine waveform has a 1V amplitude.

T L L3
0.800 + R
> A sne wave with
0.700 -+ P % 1Vpkdisplayed in R
{ | EUmms. Hann window
- 0600 + | | oppsed R
[%) | ‘
|
5 0.500 - f | -
=
< 0400 + | | -
o / \
f 0.300 + l‘ \ R
| II
0200 + { |’ i
] g
0.100 + / \ -
/ \
CN L Il = e

950.000 1000.000 1050.000 1100.000
Frequency (Hz)

A sine wave is measured with EUrms spectrum unit. The peak reading is 0.707V. The sine waveform has a 1V
amplitude.

EUrms

The EUms displays the RMS value of a periodic frequency component at a discrete frequency.
This spectrum type is suitable for narrowband signals.

Page 115 of 139

EUrms) Power spectrum
The (EUms)? displays the power reading of a periodic frequency component at a discrete
frequency. This spectrum type is suitable for narrowband signals.

T T T

0.500 + i & A sine wove weh 1Vpk
| dispiaysdin EUms

| Hann wndow appled

:

Mag (V)2 (RMS)
8

o
8
}

0.100 + » |

= E—

900.000 950.000 1000.000 1050000 1100.000
Frequency (Hz)

A sine wave is measured with (EUrms)2 spectrum unit. The peak reading is 0.5V2. The sine waveform has a 1V
amplitude.

EUy/Hz, Power Spectrum Density

The EU2/Hz is the spectrum unit used in power spectrum density (PSD) calculations. The unit is
in engineering units squared divided by the equivalent filter bandwidth. This provides power
normalized to a 1Hz bandwidth. This is useful for wideband, continuous signals. EU2/Hz really
should be written as (EUrms)2/Hz. But probably due to the limitation of space, people put it as
EUa/Hz.

18367.97
White noise with 1 volt RMS amplitude displays as 100 u Vrms2/Hz.

The image above shows a white noise signal with 1Vims amplitude or 12 in power level. The
bandwidth of the signal is approximately 10000 Hz and the VV?/Hz reading of the signal is around
0.0001 V?/Hz. The 1 V RMS can be calculated as follows:

1 Vims = sqrt (L0000Hz * 0.0001 V2/Hz)

EU2S/Hz, Energy Spectrum Density

The EU2S/Hz displays the signal in engineering units squared divided by the equivalent filter
bandwidth, multiplied by the time duration of signal. This spectrum type provides energy
normalized to a 1Hz bandwidth, or energy spectral density (ESD). It is useful for any signals
when the purpose is to measure the total energy in the data frame.

Page 116 of 139

The ESD is calculated as follows:

Values for ESD = values of PSD * Time Factor

were the Time Factor = (Block size)/Af and Af is the sampling rate / block size.

Notice that in EU%/Hz, or EU?S/Hz, EU really means the RMS unit of the EU, i.e., EUrms.

Mag (V) * S/ (H2)

5000.000 10000.000
Frequency (Hz)
Random signal with 1 volt RMS amplitude and Energy Spectrum Density format.

Cross Power Spectrum (CPS)
The Cross Spectrum characterizes the relationship between two spectra. For two signals x and y,
with frequency components X(f)and Y(f), it is defined as:

N
1
Gy () =5) VDXl
k=1

The Cross Spectrum reflects the correlation between the two signals. While the Power Spectrum
is real-valued, the Cross Spectrum is complex. This means that it also describes the phase
relationship between the two signals.

Selecting different spectrum types will not affect the CPS spectrum in Real + Imaginary values.

A CPS signal from an EDM DSA FFT Analysis test:

(CPS(Ch2,.Ch1)) v x

48 Tlgal(OZFIF (RAs) T T T [— cPsitn2.ch1) |
-30 t :
-50 :
o ; :
-80 : b
o |))) , Frequency (Hz)|

[Phase Degree) ! i T " [—— cPs(tha.ch1) |

s0 | |

Frequency (Hz) |
E\ 0 2000 4000 6000 8000 11225

Page 117 of 139

{CPS{Ch2,Ch1))

0.0030 [

0.0020

0.0010 [

0.0000

[Real ([gal)*(DZFF RMS)

i —— CPS(Ch2,Ch1)

| Frequency (H2)

0.000008
0.000006
0.000004

0.000002
0.000000

Imaginary (igal)"l0ZF))F / Hz T T

i —— CPS(Ch2,Ch1)

| | Frequency (Hz)

200 250 m

CPS(Ch2,Ch1) Y-Re CPS(Ch2,Ch1) Y-Im
X Frequency (Hz) Real ([gal*[QZF) Imaginary
[RM3) (Igal)*(0ZF)’ (RMS)
| 0.00 0.0039 0.0000
2 25,00 0.0010 1.0867E-005
3 50.00 2.8946E-006 -2.8693E-007
4 75.00 1,5555E-006 1.6743E-008
5 100,00 1.8282E-006 5.0550E-008
6 125,00 2,2522E-006 24669E-007
T 150.00 2.5861E-006 2.0777E-007
g 175.00 1.5724E-006 1.0243E-007
g 200,00 9.9860E-007 -3.7346E-008
10 225,00 7A721E-007 -2 1721E-010
11 250.00 7.3486E-007 1.7514E-008
12 275.00 6.4370E-007 8.7293E-009
13 300.00 2.9944E-007 2.9369E-008
14 325.00 3.2161E-007 1.3775E-008
arc 200 N0 2 SEIIE ONT 1 TOEIE NG

ATFX API C# Demo display
The ATFX API will read the CPS in Real & Imaginary values.

Black(Ch1)
Block(Ch2)
Block(Ch3)
Block(Chd)
Black(ChS)
APS(Ch)
APS(Ch2)
APS[Ch3)
APS(Chd)
APS[ChS,

CPS(Ch3,Ch1)
CPSICh4, Chi)
CPSIChS, Chi)
H(Ch2,Chi)
COH(Ch2,Ch1)
H(Ch3,Ch1)
COH(Ch3,Ch1)
H(Ch4,Chi)
COH(Ch4,Ch1)
H(Ch5,Ch1)
COH(ChS,Ch1)
FFT(Ch1)
FFT(Ch2)
FFT(Ch3)
FFT(Ch4)
FFT(ChS)

¥ Data-Frequency (Hz) ¥ Data-Real jgall*(OZF) '{g‘;ﬁ;;%gi"“
0.00389975868165493 0

25 0.000978268450126052 1,086672900377...
50 2.39462786895456E-06 -2.86934437099...
75 1.55553834702005E-06 1,674782978966...
100 1.32822236638453E-06 5,055041896184...
125 2.25224443513472E-06 2.466354027716...
150 2,58609225056716E-06 2.077682097478...
175 1.57242186560325E-06 1,024331766075...
200 9.98601649371267E-07 -3.73458526325...
225 7.17210532479311E07 8.17212963966...
250 7.34857167117298E-07 1.751381262238...
275 6.43697944724408E-07 8.729287285015...
300 2,99443826179413E-07 2,936857512736...
325 3.21606762554438E-07 1.377534886159...

Page 118 of 139

Frequency Response Function (FRF)
The cross-power spectrum method is used for estimating the frequency response function
between channel x and channel y. The equation is:

H‘L = @

X

where Gyx is the averaged cross-spectrum between the input channel x and output channel

y. Gxx is the averaged auto-spectrum of the input. Either power spectrum, power spectral
density, or energy spectral density can be used here because of the linear relationship between
input and output.

This approach will reduce the effect of the noise at the output measurement end, as shown below.

input output
p——» System, true Hyx P -

G}q— noise
estimated

-
observed x Hyx observed y

Figure 1. Frequency Response Function Computation

The frequency response function has a complex data format. You can view it in real, imaginary,
magnitude, or phase display format.

Please note when describing a system with input x and output y as shown above, some people are
used to a notation Hyx instead of Hxy. Most DSA products follow the convention used in the
reference books listed before. Hxy stands for a frequency response function with input x and
outputy.

Selecting different spectrum types will not affect the FRF spectrum in Real + Imaginary values.

An FRF signal from an EDM VCS Random test:

Page 119 of 139

(51G0004_FRF(Ch2,Ch1)) x

1.00E-05

1.00E-06

1.00E-07

1.00E-028

1.00E-0%

LogMag (m/im/s*)

' [— SIG0004_FRF(Ch2,Ch1)_1 |

L | Frequency (Hzj |

b

-180

| Fhase (Degree)

[— SIG0004_FRF(Ch2,Ch1)_2 |
[

,_Frequency (Hz)

20

100 1000 2000

(S1G0004_FRF(Ch2,Ch1))

b

[Real (mirtf/s?) ' ' ' |[— SIG0004_FRF(Ch2,Ch1)_1
0.00001 l_
0.00000
-0.00001 -
-0.00002 |
-0.00003

C I I I I I I Frequency (Haf]

Imaginary my/tmist | T ' —— SIGO004_FRF(Ch2,Ch1)_2
0.00001 -
0.00000 -
-0.00001 | —
-0.00002 B
-0.00003 | | | | | | Frequengy (Hz)

1.75E-04 oo o1 10 10 100 3000

(SIG0004_FRF{Ch2,Ch 1))

5|

SIGO004_FRFICh2,Ch1| SIGODO4_FRF(Ch2,Chi

X Frequency (Hz) ¥-Re ¥-lm
Real (m)/[m/s9 Imaginary (m)/(m/s%)
P 0.00 -3.0136E-005 0,0000
2 5.00 -2.3061E-005 9.5175E-006
3 10.00 -5.8856E-006 -2.1676E-007
4 15.00 -5.2123E-007 -1.3338E-006
5 20,00 -3.5273E-007 -6.5361E-007
& 2500 -2.7640E-007 -5.2518E-007
7 30.00 1.9126E-007 2.7263E-007
8 35.00 7.3205E-009 1.0274E-007
9 40,00 -7.1951E-003 3.1335E-007
10 45,00 4,1758E-008 1.3492E-007
11 50,00 2,1887E-008 -8.3800E-003
12 55.00 -1.3283E-007 5.6560E-008
13 80,00 1.3237E-007 6.4435E-008
14 65.00 -5.4746E-008 -1.0595E-007
ar IO 00 2 SONNE NG 1 COMEE AT

Page 120 of 139

ATFX API C# Demo display
The ATFX API will read the FRF in Real & Imaginary values.

Block(Ch1)
Block(Chz2)
Block(Ch3)
Block(Ch4)
Block(ChsS)
Block(Che)
EBlock({ChT)
EBlock(Chg)
Elock{drive)
APS[Ch1)
APS[Ch2)
APS[Ch3)

{
APS[Ch5)
APS[ChE)

{
APS[ChE)
APS[drive)
contral(f)
naiseff]
profile(f)
HighAbort(f)
HighAlarmif)
LowAbaort(f)
LowaAlarmif)
H

FRF(Ch3,Ch1)
H(Ch2,Ch1)
H(Ch3,Ch1)
H(Ch1,Ch2)
H(Ch3,Ch2)
H(Ch1,Ch3)
H(Ch2,Ch3)

¥ Data-Frequency (Hz)

¥ Data-Real (m)/(m/s%)

5
10
15
20
25
20
5
40
45
50
55
)
65
70
75
80
85
90

Coherence Function (COH)

-2.30612968152855E-05
-5.88556436036396E-06
-5.21230845151877E-07
-3.52732229202957E-07
-2 7640447797 2392E-07
1.91256930293093E-07
7.32050908780479E-09
-7.19511703550779E-08
4.17579215650221E-08
2,18867040047144E-08
-1.32833193333681E-07
1.32367247329279E-07
-5.47456586730277E-08
2.68997140912597E-09
1.115928453140567E-07
1.63174917133802E-07
-9.8675094761802E-08
-4.06716083034553E-08

The coherence function is defined as:

Y data-lmaginary
[m)/ /s

0
9.51752554101404E-06
-2.16759630689012E-07
-1.33382650346503E-06
-6.53609163236979E-07
-5.2517560789056E-07
2,72632348696739E-07
1.02737764962058E-07
3.13354576064739E-07
1.34917854666128E-07
-5.38004226011435E-08
5.65598803343166E-08
6.44350066636434E-08
-1.05986721621321E-07
-1.57058181571301E-07
1.14983926330319E-07
9.20949503324664E-08
1.34073658341771E-07
2.00545624551296E-08

where Gyx is the averaged cross-spectrum between the input channel x and output channel

y. Gxx and Gyy are the averaged auto-spectrum of the input and output. Either power spectrum,
power spectral density, or energy spectral density can be used here because of the linear
relationship between input and output.

When the averaging number is 1, coherence function has a meaningless result of 1.0 due to the
estimation error of the coherence function.

The coherence function is a non-dimensional real function in the frequency domain. It can only
be viewed in the real format.

Please note when describing a system with input x and output y as shown above, some people are
used to a notation Hyx instead of Hxy. Most DSA products follow the convention used in the
reference books listed before. Hxy stands for a frequency response function with input x and

output y.

Selecting different spectrum types will not affect the COH spectrum.

Page 121 of 139

An COH signal from an EDM DSA FFT Analysis test:

: : ey 51G0000_COH(Ch2,Ch
Mag Cohlxy) [— siGooo0_coH(chz.cnty | | [X Frequengy (Hz) ¥
Mag Cohlxy)
[0.00 0.9993
2 25.00 0.9383
3 50.00 0.8673
4 75.00 0.8388
5 100.00 0.9061
& 125.00 0.9378
7 150.00 0.9626
8 175.00 0.9272
5 200,00 0.9159
10 225,00 0.8609
11 250,00 0.8446
12 275.00 0.8482
13 300,00 0.7125
I I Frequency (Hz)
W 25 100 1000 11225 14 325.00 0.7701
&l ar 2E0 00 07703

ATFX API C# Demo display

Record Information Signal Data Information Channel Table Merge Info

Block(Ch1] ¥ Data-Frequency (Hz) ¥ Data- Cohlxy)

BlockiCh2)

BlackiChs3) _ 0.999284982681274

BlackiChd)

Blockichs) 25 0.998326361179352

APS(ChT) 50 0.867903888225555

APS[Ch2)

APS[Ch3) 75 0.888835549354553

APS[Ch4)

APS(ChS) 100 0.906059086322734

CPS(Ch2,Ch1) 125 0.937806487083435

CPS(Ch3,Ch)

CP5(Chd,Ch) 150 0.962574124336243

CP5(ChS,Ch)

HiCh2.Ch1 175 0.927152752876282
200 0.915883362293243

H(Ch3,Ch1)

COH(Ch3,Ch) 225 0.860927641391754

HICh4,Ch1)

COH(Ch4,Ch) 250 0.844622850418091

HIChs,Ch1)

COHIChS,ch1) 275 0.845221898075918

FFT(Ch1) 300 0.712493121623993

FFT(Ch2)

FFT(Ch3) 325 0.770140171051025

FFT(Chd)

FFT(ChS) 350 0.779341042041779

Sine Spectrum

Spectrum is the sine measurement value plotted across the frequency. Usually it is represented in
acceleration peak value. The sine measurement is taken at the output of tracking filter. The
spectrum in sine is not the FFT transform of a time measurement. It is just the history trace of
equivalent sine peak values drawn across the whole frequency. The resolution of spectrum signal
has nothing to do with the resolution of frequency change in the control process.

The magnitude of the frequency components of signals are collectively called the amplitude
spectrum. In many applications, the quantity of interest is the power or the rate of energy transfer
that is proportional to the squared magnitude of the frequency components. The average squared

Page 122 of 139

magnitudes of all the DFT frequency lines are collectively referred to as the Power Spectrum,
Gxx-

The averaging process is more properly termed an ensemble average, wherein the squared
amplitude from N signal blocks at each measured frequency, f, are averaged together. Letting an
asterisk (*) denote conjugation of a complex number, the “power” averaging process is defined

by:

N
1 *
Gaxl) = IX(DP? = ﬁ;xk(f)xk(f)

Selecting different spectrum types will affect the Sine spectrum.

Two Sine spectrum signals from an EDM VCS Swept Sine test:
O

= SIGOD03_Spectrum(Ch
Laghtag nvs™ (0-pedk) [— SIG0003_Spectrum(Ch1) E X Frequencgy (Hz) ¥ =P :
51G0003_Spectrum(Chi) Peak: 9.8078 mis* @ 13.22 Hz LogMag m/s*
Save Time: 7/7/2022 12:23:21 FM > o1 == 0.9902
2 5.01 0.9962
3 5.03 1.0021
0 1 a 5.04 1.0081
5 5.08 1.0144
6 5.07 1.0210
7 5.09 1.0275
8 5.10 1.0333
1.0 1
9 512 1.0389
10 5.13 1.0448
1 5.15 1.0507
12 5.16 1.0563
- 13 518 1.0627
:)) Frequency (Hz)
E‘ 5.0 10 20 30 50 100 250 14 5.19 1.0687
£ 79 1 N7A9
(51G0003_Spectrum(Ch2)) v x [(51G0003_Spectrum(Ch2))
<= SIGO003_Spectrum(Ch
Loghag m (0-peald [— siG0003_Spectrum(Ch2) - ¥ Frequency (Hz) ¥
S1G0003_Spectrum{Ch2) Peak: 2.5536E-007 m @ .93 Hz LogMag m (0-peak]
1.00E-06 Hsave Time: 7/7/2022 12:29:21 PM - [5.00 8.7943E-008
2 5.01 8.8325E-008
3 5.03 8,9455E-008
4 5.04 1.1820E-007
5 5.06 1,5851E-007
1.00E-07 4
[5.07 1.8350E-007
7 5.09 1,8261E-007
a2 5.10 1.6459E-007
9 512 1,4099E-007
1.00508 | | 10 513 1,1879E-007
1 5.15 8,9419E-008
12 5.16 5.8600E-003
13 5.18 5.3625E-008
1 L Frequency (Hz)
gl 5.0 10 20 40 100 250 14 518 6.8673E-008
=21 2737€ an

ATFX API C# Demo display

Page 123 of 139

Record Information Signal Data Information

Channel Table Merge Info

Block(Ch1)
Block(Ch2)
Block(Ch3)
Block(Ch4)
Block(Ch5)
Block(ChE)
Block(ChT)
Block(Chg)
Block(drive

[
Spectrum({Ch2)
Spectrum{Ch3)
Spectrum|Ch4)
Spectrum(Chs)
Spectrum(ChE]
Spectrum({Ch7)
Spectrum|Cha)
Spectrum{drive)
control(f]
profile(f]
HighAbort(f}
HighAlarmif}
Lawdbort(f)
Lowalarm(f)
Hif)

¥ Data-Frequency [Hz)

¥ Data- m/s® (0-peak)

5.0146561861038

5.02935533296582
5.04409756651424
5.05888301304635
5.07371179922966
5.08858405210297
5.10349989907746
5.11845946793778
5.13346288684315
5.14851028432846
5.16360178930535
5.17873753106334
5.19391763927094

0.996180362301771
1.00207090522107
1.00812844935074
1.01444163707035
1.02099148180525
1.02745310850416
1.03333187923534
1.03888230446368
1.04475746643947
1.05074857639722
1.05681006576688
1.06271264809293
1.06867610832116

Record Information 5ignal Data Information Channel Table Merge Info

Block(Ch1)
Block(Ch2)
Block(Ch3)
Block(Ch4)
Block(Ch5)
Block(Chg}
Block(ChT)
Block(Cha)
Elock{drive]
Spectrum(Ch1

[
Spectrum|Ch3)
Spectrum|Ch4)
Spectrum{Ch5)
Spectrum{ChE)
Spectrum{Ch7)
Spectrum|Ch)
Spectrum|drive]
controlf)
profile(f)
HighAbort(f)
Highalarm(f)
LowAbort(f]
LowAlarmif]
Hif)

¥ Data-Frequency [Hz)

¥ Data- m (0-peak)

5.0146561861038

5.02935533296582
5.04409756651424
5.05888301304635
5.07371179922966
5.08858405210297
5.10349389307746
5.11845946793778
5.13346238634315
5.14851023432846
5.16360178930535
5.17873753106334
5.19391763927094

8.83251100373482E-08
8.94552331454004E-08
1.18197839345064E-07
1.58511810342731E-07
1.83500451902595E-07
1.8261306437202E-07
1.64590217984626E-07
1.4089071233383E-07
1.18786102936034E-07
8.94188229663801E-08
5.85995056408758E-08
3.3624806693942E-08
6.86725493759543E-08

Shock Response Spectrum (SRS)

The Shock Response Spectrum (SRS) is an entirely different type of spectral measurement. It is
used to access the damage potential of a transient event such as a package drop or an earthquake.
The SRS was first proposed by Dr. Maurice Biot in 1932.

The SRS is not the spectrum of the pulse. (The FFT provides this.) The SRS is not a linear
operator as the FFT is. That is, an SRS does not uniquely define a single waveform. Many very
different transient time-histories can produce the same SRS.

What the Shock Response Spectrum is, is the representative response of a class of simple
structures to the given transient acceleration time-history. This response is provided by
simulating a group of spring-mass-damper systems sitting on a common rigid base that is forced
to move with the measured acceleration of the subject shock pulse. Each single degree-of-
freedom (SDOF) spring-mass-damper has a different natural frequency; they all have the same

Page 124 of 139

damping factor. The spectrum is formed by plotting the extreme motion (acceleration)
experienced by each mass against its resonance frequency.

The frequency spacing of the resonance frequencies is logarithmic, much like the 1/3 octave
filters used in acoustical analysis. That is, it is a type of proportional bandwidth analysis where
the half-power bandwidth of each SDOF system increases in proportion to its resonance
frequency. The resolution of an SRS is defined by the number of simulated SDOFs included in
the desired analysis span. The percent damping of all the SDOFs is selectable (although most
tests specify 5% damping).

The extreme motion of each mathematically simulated SDOF mass is monitored by several peak
detectors. The extreme positive and negative accelerations are retained during the duration of the
input pulse and after it. Maximum and minimum values captured during the pulse’s duration are
termed Primary extremes. Those found after the pulse has returned to zero are termed Residual
extremes. Specific tests will prescribe whether positive, negative, or extreme absolute values
captured should be displayed. They will further specify Primary, Residual, or combined (maxi-
max) data be plotted.

Selecting different spectrum types will not affect the SRS spectrum.

The Maxi, Pos, and Neg SRS signals from an EDM VCS Shock test:

(SIG0001_MaxiSRS{Ch1),51G0001_NegSRS{Ch1),51G0001_PosSRSICh 1) v (SIG0001_MaxiSRS(Ch 1))
[TogMag m/s | T [— SIG0001_MaxiSRS(Ch1) j" SIGD001_MaxiSRS(Ch1
X Frequency (Hz) ¥
100 | Loghag m/s*
P o1 3.84 4,2063
10 SIG0001_MaxiSRS{Ch1) Peak: 107.2222 mis*@ 50.00 Hz
Save Time: 7/7/2022 3:16:56 PM 2 4,96 7.3834
10 | i 3 625 15.0472
\ \ Frequency (Ha)
Mogag mst ! ! |— sIG0001_NegSRs(ch1)] 4 7.87 22,3344
5 9,92 27,8444
100 |
6 12.50 49,0164
10 - SIG0001_NegSRS(Ch1) Peak: 106.1101 m/s* @ 63 .00 Hz| -l" 15'?5 55'3369
Save Time: 7/7/2022 3:16:56 PM 19,34 62.2705
10 | | 3 ! .
.) Frequency (42 g 25.00 66.6374
logMag m/s® ' ' [—— SIG0001_PosSRS(Ch1)
10 31.50 90.7439
100
11 39.69 92,5792
R 51G0001_PosSRS(Ch1) Peak: 1072222 mis* @ 50.00 Hz 12 50,00 107.2222
Save Time: 7/7/2022 3:16:56 PM
0T] 13 £3.00 1061101
L Frequency (Ha) 14 7937 95.0206
39 10 100 1008
b“ 4 100 00 On TN

Page 125 of 139

{SIG0001_PosSRS(Ch1)) R e S T R Y

El §1G0001_PossR(ChT) | |1 ‘r S1G0001_NegSRS(Ch1]
X Frequency (Hz) ¥ requency (Hz) ¥ .
LoghMag m/s® LogMag m/s
[3.84 1.9085 [394 4.2063
z 4,96 7.3834 2 496 5.3528
3 6.25 15,0472 3 6.25 11,1116
4 T.87 20,7145 4 787 22,3844
5 9,92 27.8444 g 9.92 271121
6 12,50 45,0164 & 12.50 47481
ri 15.75 55.3370 7 15.75 55.8369
8 15.24 49,8204 3 19,84 62,2705
9 25.00 52,3731 9 25.00 66.6374
10 31.50 80,7439 10 31.50 29,8160
11 39.69 T8.2693 11 39.69 92,5792
12 50.00 107.2222 12 50.00 104.7085
13 63.00 80,6851 13 63.00 106.1101
14 7937 93,4566 14 T9.37 95,0206
ac 100 00 an 7077 ar 100 O £7 2454

ATFX API C# Demo display

Record Information 5ignal Data Information Channel Table Merge Info Record Information Signal Data Information Channel Table Merge Info

Block(Ch1) ¥ Data-Frequency (Hz) ¥ Data-m/s® Block(Ch1) ¥ Data-Fre -m/s*
quency (Hz) Y Data-m/s

Block(Ch2) Block(Ch2)

Block(Ch3) 4,20627546310425 Block(Ch3) 1,50849030017853

Block(Ch4) Block(Ch4)

BlockiChe) 4,96062854937461 7.38337087631226 Block(Chs) 4,96062394937461 7.38337087631226

Block(Chg) 6.25000083403495 15.0472183227539 Block(ChE) £.25000083403495 15.0472183227539

Block(Ch7) Block(ChT)

Block(Chg) 7.87450761266112 22,3844356536865 Block(Cha) 7.87450761266112 20,714506149292

profileft) profileft)

profile(9.92125789874915 27.8443756103516 profilet 9.92125789874915 27.8443756103516

HighAbort(t) 12.5000016680638 49.0164337158203 HighAbort(t] 12,5000016680695 49.0164337158203

LowAbort(t) LowAbort(t)

Block(drive) 15.7490152253221 55.8368759155273 Block(drive) 15.7480152253221 55.3370170593262

drive| drive|

contrrglm 19,8425157974982 £2.2705116271873 @ ntfglm 19.8425157974982 49,8204383850098

;‘::T:::?tl]m 25,0000033361394 66.6374053955075 ;‘;Tst;‘r’t']fﬂ 25,0000033361394 52,3731155395508

hinv(f} 31.488030450644 50.7433383549805 hinvif) 31.498030450644 50,7438388549805

error_t error_t

N’S[C_h'l] 39.685031594996 92.5791854858393 N’S[Eh 1) 39.685031594996 78.2693405151367

APSICHI) 50.0000066722785 107.222160339355 ‘:ﬁl‘;’;{i} o 50.0000066722785 107.222160339355

PosSRS(Ch) £2.9960608012876 106.110076904297 £2,9960600012876 90.6851196289063

MegSRS(Ch1) MNegSRS(Chi)

Record Information

Signal Data Information

Channel Table Merge Info

ElockiCh1)
Block|{Ch2)
Block({Ch3)
Block(Ch4)
Elock{Chs)
Elock{ChE)
Block({Ch7)
Block(Ch8)
profileft)
profile(f]
HighAbaort(t)
Lowabort(t)
Elock{drive)
drive(f]
controlt)
control(f)
noise(t}
hinv(f}
error_t
APS(Ch1)
APS|Ch2)
MaxisRS[Ch1)

Pos5R3(Ch1
g

¥ Data-Frequency (Hz) ¥ Data-m/s*

4,20627546310425
4,960628945837461 5.35278511047363
6.25000083403495 11.1116371154785
7.87450761266112 22,3344356536865
9,92125789874915 27.1121196746826
12.5000016680698 47.4811096191406
15.7490152253221 55.8368759155273
19.8425157974982 62.2705116271973
25.0000033361394 66,6374053955078
31.498030450644 89.8159942626953

39.685031594996

92.5791854858393

50.0000066722735

104.7085189381934

62.9960609012876

106.110076904257

Page 126 of 139

Order Spectrum

Synchronizing the sampling to the rotating speed allows presentation of measurement results in
the angle and order domains in lieu of the time and frequency domains. An order is simply a
frequency divided by a reference frequency, normally a machine’s shaft-turning frequency. This
means that the order location in an order-normalized spectrum indicates the number of vibration
cycles per shaft revolution. The tracked magnitude (which can be measured using EUpk, EUrms, Or
EUms?) of an order is the measurement extracted through a tracking filter with its center
frequency located at this order.

An Order Power Spectrum measurement gives a quantitative description of the amplitude, or
power, of the orders in a signal. It provides a good view of all order components of a signal. This
can help you rapidly identify significant forcing mechanisms.

Selecting different spectrum types will affect the Order spectrum.

An order spectrum signal from an EDM DSA Order Tracking test:

: - - |§| SIG0011_ORDSpec(Ch
[Mag gal (0-peak] [siG0011_ORDSpecich)] || [|= X Order ¥
Mag gal [0-peak]
ro1 0.00 0.4315
80 B 2 0.10 0.0084
3 0.20 0.0024
= | | 4 0.30 0.0011
5 040 7.5531E-005
6 0.50 0.0009
- 1 7 0.60 0.0007
8 0.70 0.0006
a0 L B g 0.80 0.0014
10 0.90 0.0002
o 1 1.00 99,1336
12 110 0.0005
. . ‘ Order 13 1.20 0.0001
El 0.0 0.5 1.0 15 2.0 14 1.30 0.0004
s an noons

ATFX API C# Demo display

Record Information 3ignal Data Information Channel Table Merge Infa

Block(Ch1] X Data-Order (Order] ¥ Data- gal (0-peak]

Block(Ch2)

Block(Chd)

Blockiche 0.100000001490116 0.00839911100548037

Eﬁﬁé mﬁ_ 0,200000002980232 0,00242812878748969

ORDSpec(Ch2)

ORDSpec(Ch3) 0,300000004470348 0.00114875959971474

ORDSpec(Chd)

ORDSpec(Chs) 0,400000005960464 7.55305127977208E-05

APS[Ch1) 0.50000000745058 0.000884571164582303

APS[Ch2)

APS(Ch3) 0,600000008940696 0,000683543197271888

APS(Chd)

APSIChS) 0,700000010430812 0,00064641 6738642907

OTRK_1x(Ch1)

OTRK UR iCh1) 0,800000011920928 0,0013863800724087

OTRK_Down_1x(Ch1) 0,900000013411044 0,000229367262013766

Band[Cverall]{Ch1)

Band[0, 11.52K][Ch1] 1,00000001490116 99,1335707202661
1,10000001639128 0,000461614281389311

Page 127 of 139

Octave Spectrum

The Fractional Octave Filter Analysis function applies a bank of real-time 1/n" octave filters to
the input time streams and generates two types of responses at the same time: 1/N" octave
spectra, and the RMS time history of each 1/N" octave filter band. The output of each real-time
filter bank is in fact a 3D waterfall signal that is arranged with the x-axis as logarithmic
frequency and the z-axis as time. Frequency weighting is applied in the frequency axis and time-
weighting is applied in the time axis.

Selecting different spectrum types will affect the Octave spectrum.

An octave signal from an EDM DSA Acoustic Analysis test:
scom cevcny "

[Mhag gal RMS) T T ||:| S|GUUU1_OCT(Ch1}_ |ﬁ| ¥ Frequency (Hz) i:gg?;l_ﬂggs[]ChHY
— (I 10.00 0.0014
0.0030 |- N | 2 12,50 0.0015
-] 3 16.00 0.0014
0.0025 | e]] 4 20.00 0.0023
o — . 5 25.00 0.0020
0.0020 | || - —]] 6 31.50 0.0023
__7__7— 7 40.00 0.0025
0.0015 |] 8 50,00 0.0025
9 £3.00 0.0025
0.0010 |- | 10 80.00 0.0027
1 100.00 0.0026
0.0005 |- J 12 125.00 0.0029
13 160.00 0.0025
0.0000] , ! L gepuency (Ha) 14 200,00 0.0026
El 10 100 1000 10000 = 250,00 0.0026

ATFX API C# Demo display

Record Information 5ignal Data Information Channel Table Merge Info

Block(Ch1] ¥ Data-Frequency [Hz) Y Data- gal (RMS)
Block(Ch2)

Block(Ch3) 10.0000047683716 0.0013835885980273
Block(Chd4)

Block(ChS) 12.5892601013184 0.00150412444740465
APS[CRT) 15.8439393956299 0.00144273675%07536
APS{Ch2)

APS{Ch3) 19,9526329040527 0.00229965139768953
APS[Ch)

APS(ChS 2511887550354 0.0019786770274269
Eﬁﬁﬁ_ 31.,6227912902832 0.00228125175817049
QOCT(Ch2)

QCT(Ch3) 39.8107376098633 0.00246421120712707
OCT(Ch4)

OCT(ChS) 50.1187477111816 0.0024650375109865
SLMValues(Ch1)

dBHistogram(Ch1) 63.0957641601563 0.00253251128161103
SLMValues(Ch2) 79.432861328125 0.00263479680158259
dBEHistagram(Ch2)

sLMValues(Ch3) 100.000045776367 0.00257289966108854

Page 128 of 139

Compution of Frequency Spectrum Signals

Linear Spectrum
Most DSA products use the following steps to compute a linear spectrum:

Step 1
First a window is applied:
x(t) =w() x(1)’

where x(?) " is the original data and x(t) is the data used for the Fourier transform.

Step 2
The FFT is applied to x(t) to compute X(k), as described above.

Step 3

Averaging is applied to X(k). Here Averaging can be either an Exponential Average or Stable
Average. Result is Sx .

Sx’ = Average (X(k))

Step 4
To get a single-sided spectrum, double the value for symmetry about DC.

Amplitude Correction factor is applied to Sx’ so that the result has an un-biased reading at the
harmonic frequencies.

Sx =2 Sx"/AmpCorr

where AmpCorr is the amplitude correction factor, defined as:
N-1

AmpCorr= Z wi k)

=0

where w(k) is the window weighting function.

This correction will make the reading at specific frequency correct even when a window is
applied. For example, if a 1-volt amplitude sine wave is analyzed by Linear Spectrum with Hann
window, you will get the following spectral shape:

Page 129 of 139

volts

1 volt
1.0

ﬁ :
\/ frequency

Spectrum Unit = EU,
EU Type = Peak

Linear Spectrum of 1-Volt Sine Wave

Auto Power Spectrum
To compute the auto power spectra, the instrument will follow these steps:

Step 1
A window is applied:
x(k) = w(k) x(k)’
where x(k)’ is the original data and x(K) is the data used for a Fourier transform.

Step 2
The FFT is applied to x(t) to compute Sx

N-1

Sy = 2 x(k) g~ i2mkn /N

n=0

Next the so called periodogram method is used to compute the spectra with area correction.
Using Sx.

Step 3

Calculate the Power Spectrum Sxx = Sx Sx* / (AmpCorr)?

Or calculate the Power Spectral Density = Sx Sx* T / EnergyCorr
Or calculate the Energy Spectral Density = Sx Sx* T2 / EnergyCorr

where T is the time duration of the capture. The symbol * is for complex conjugation.
EnergyCorr is a factor for energy correction, which is defined as:

N-1

1 .
EnergyCorr = QZ wik)?
T

Page 130 of 139

N is the total number of the samples and w(k) is window function.

For any power spectral measurement of the three types listed above, the EU is automatically
chosen as EUms because only EUms has a physical meaning related to signal power.

After the power spectra are calculated, the averaging operation will be applied.

Cross Power Spectrum
To compute the cross-power spectral density Gyx between channel x and channel y:

Step 1
Compute the Fourier transform of input signal x(k) and response signal y(k):
N-1

Sx = Z k) wik) g—famkn/N

n=0

N-1
5}3 = Z J_-{k:] -H_.{k:]g—_i':.':ﬁi’! /N
n=0

Step 2

Compute the instantaneous cross power spectral density:
Syx=Sx*Sy T

Step 3

Average the M frames of Sxx to get averaged PSD Gxx
Gyx’ = Average (Syx)

Step 4
Compute the energy correction and double the value for the single-sided spectra
Gyx =2 Gyx’ / EnergyCorr

Frequency Response Function

An important application of Dynamic Signal Analysis is characterizing the input-output behavior
of physical systems. In linear systems, the output can be predicted from a known input if the
Frequency Response Function (FRF) of the system is known. The Frequency Response Function,
H(f), relates the Fourier Transform of the input X(f) to the Fourier Transform of the output Y (f)
by the simple equation:

Page 131 of 139

Y(f) = Hyy(HX()

Multiplying both sides of this equation by the conjugate of the input spectrum and ensemble
averaging explains the importance of the power and cross power spectra as they allow H(f) to be
measured and calculated.

N N
1 1
2D YeDXiP) = 6 (F) = Hey (D5 D Xu(DXill) = Hey(NGx(F)
k=1 k=1

That is:
Gy(f)
Gxx(f)

ny(f) =

The fact that Y (f) is dependent on the input X(f) is what makes the system linear. When
measuring the input-output behavior of a system, there is always noise present that obscures the
output. An important measure is how much of the output is actually caused by the input and a
linear process. This is indicated by another important real-valued spectrum called the (ordinary)
Coherence Function. This coherence function is also defined in terms of the cross spectrum and
the power spectra. Specifically:

Gy(f)Gy(f)

2
Yiy(f) =
» Gxx(f)Gyy(f)
Note that the coherence can also be stated as the product of an FRF with its inverse function.
That is, if Hxy measures a process going from input, x, to output, y, Hyx characterizes the same
process, but treats y as the input and x as the output.

Y24,(f) = Hyy(f) g—fzzﬂxy(f)ﬂyx(f)

This product definition indicates the coherence represents an “energy round trip” or a reflection
through the process. We apply Gxx to Hxy and get Gyy at the output. Then we conjugate Gyy (to
flip it or reflect x(t) in time) and pass it through Hyx. In a perfect world, this would result in
exactly Gy as the output of Hyx.

If the system is linear and none of our measurements are contaminated by noise, the trip is
perfect, and we get back everything we put in. That is, the coherence will be exactly 1.0. If the
system is non-linear or if extraneous noise has been interjected, the round-trip will be less
efficient, and the coherence will be less than one (but never more).

Thus, the coherence is always between 0 and 1. A coherence of 1.0 means the output is perfectly
explained by the input (i.e., the system is linear). A coherence of 0 means the output and input
are unrelated. VValues in-between state the fraction of measured output power explained by the
measured input power and a linear process. Experienced analysts always use the coherence
measurement to quantify the quality of an FRF measurement at every frequency.

Page 132 of 139

Order Spectrum

The following figure shows conceptually how angle re-sampling can be used to analyze
vibrations from an engine during start up. Once the signal has been transformed into its angle
domain, the FFT can be applied to analyze the order spectrum of the vibrations.

Engine Speed in
RPM

Analog signal overplot with
4X per revolution

_AWf:hometer signal
Uniformed Sampled Data M

Frequency Spectrum

Uniformed Sample Rate

[[l] ' u Order Spectrum

v
Synchronously Sampled Data (sampling rate is
determined by both instantaneous tacho speed
and required analysis frequency range)

Angular data resampling of a chirp signal

An important concept that must be introduced now is called AOrder (delta order). In the FFT
based frequency spectrum analysis, the frequency span and frequency resolution are fixed. The
capability of discriminating frequency components is equal in both low and high frequency. In
rotating machine analysis, we need to have better analysis resolution in the low frequency than
that in high frequency.

For example, if the rotating speed is at 60 RPM, we care if the instrument can tell the difference
between 1Hz (order 1) and 2Hz (order 2); in contrast, if the rotating speed is at 6000 RPM, the
user probably will not care if the instrument can discriminate the measurement between 100Hz
(order 1) and 101Hz.

Page 133 of 139

With the digital resampling technique, the order tracks and order spectrum are extracted based on
a filter with equal AOrder instead of equal AFrequency. The concept is illustrated in the
following figure:

Frequency Frequency
of Order of Order
Frequency Band Frequency Band
used to extract used to extract
the Orders the Orders
RPM RPM
Constant Band Tracking using Order Tracking using Digital
Regular FFT method Resample method

Comparison of constant band tracking and digital re-sampling method

The left figure shows when the order tracks are extracted using conventional FFT method with
fixed resolution, the AFrequency of the tracking filter will be fixed; the right figure illustrates
that if the order tracks are extracted using digital resampling, the AFrequency tracking filter will
be increased proportionally with the RPM. Obviously, the method of digital resampling is more
desirable in extracting the measurement of orders.

Page 134 of 139

END USER LICENSE AGREEMENT FOR CRYSTAL
INSTRUMENTS SOFTWARE

--- Updated May 11, 2022

IMPORTANT — READ CAREFULLY. This End User License Agreement (“the Agreement”) is a legally binding agreement between you (“the
Licensee”) and Crystal Instruments Corporation (“Crystal Instruments”) for the Crystal Instruments EDM (Engineering Data Management)
software, PA (Post Analyzer), EDM Cloud, Cl Store, EDC (Embedded Device Control), various API, or the embedded software installed in
CoCo, Spider and other series hardware, which includes software components and tools and written documentation (“Software”) that
accompanies this Agreement. This Agreement contains WARRANTY AND LIABILITY DISCLAIMERS.

1. SCOPE OF THE LICENSE RIGHT

1.1 By installing, copying, or using the Software, the Licensee agrees to be bound by the terms of this Agreement.

1.2 Subject to the terms and conditions of this Agreement, Crystal Instruments hereby grants to the Licensee a non-exclusive, non-transferable,
right to use the Software, as ordered by the Licensee, solely for the Licensee’s own use and solely with the Crystal Instruments hardware for
which it is intended.

1.3. The Licensee shall not be entitled to copy or distribute the Software or parts thereof; publish the Software for others to copy; sell, rent, lease,
or lend the Software; or transfer or assign the Software or the license rights to the Software to a third party in any other way whatsoever.

1.4 The Licensee shall, however, be entitled to make back-up copies of the Software to the extent that applicable law expressly permits. The use
of the back-up copy shall be subject to the terms of this Agreement.

1.5 The Licensee shall ensure that the Software is stored in such a manner that third parties do not have access to it and that a third party does not
come into possession of the Software in any other way. The Licensee shall make all employees who have access to the Software fully aware of
this obligation.

2. CHANGES TO THE SOFTWARE

2.1 The Licensee shall not be entitled to make any changes to the Software, or reverse engineer, decompile, or disassemble the Software, except
and only to the extent that applicable law expressly permits.

2.2 In the event of the Licensee or a third party interfering with or making any changes to the Software, Crystal Instruments may terminate the
Agreement with immediate effect, and Crystal Instruments hereby disclaims any liability for the consequences of such interference or change.

3. INTELLECTUAL PROPERTY RIGHTS

3.1 The Software is protected by copyright law and other intellectual property laws. Crystal Instruments or its suppliers own all copyright and any
other intellectual property rights in the Software. The Licensee shall respect Crystal Instruments’ and its suppliers’ rights and the Licensee shall
be fully liable in the event of any violation of these rights, including unauthorized passing on of the Software or any part of it to a third party.

3.2 The Licensee shall not be entitled to break, change or delete any security codes or license keys, nor shall the Licensee be entitled to change or
remove statements in the Software or on the media on which the Software is delivered regarding copyrights, trademarks, or any other proprietary
notices.

3.3 Information and data supplied by Crystal Instruments with the Software, such as, but not limited to, user manuals and documentation, are
proprietary to Crystal Instruments or its suppliers. Such information is furnished solely to assist the Licensee in the installation, operation and use
of the Software and the Licensee agrees not to reproduce or copy such information, except as is reasonably necessary for proper use of the
Software.

4. TRADEMARKS

4.1 The Licensee acknowledges Crystal Instruments’ and its suppliers’ sole ownership of any trademarks including service marks, logos and
other proprietary marks submitted with the Software, and all associated goodwill. This Agreement does not grant the Licensee any rights to the
trademarks of Crystal Instruments and its suppliers.

4.2 The Licensee agrees not to use the trademarks in any manner that will diminish or otherwise damage Crystal Instruments’ or its suppliers’
goodwill in the trademarks. The Licensee agrees not to adopt, use, or register any corporate name, trade name, trademark, domain name, service
mark, certification mark, or other designation similar to, or containing in whole or in part, the trademarks of Crystal Instruments.

5. CLOUD SERVICE PROVIDED BY CRYSTAL INSTRUMENTS

5.1 Data Location When cloud service is enabled, Crystal Instruments Corporation may process and store the customer data anywhere Crystal
Instruments Corporation or its agents maintain facilities and services.

5.1.1 Facilities All facilities used to store and process an application and customer data will adhere to reasonable security standards no less
protective than the security standards at facilities where Crystal Instruments Corporation processes and stores its own information of a similar type.

5.2 Data Processing and Security

5.2.1 Scope of Processing By entering into this agreement, customer instructs Crystal Instruments Corporation to process customer personal data
and other data related to its services only in accordance with applicable law: (a) to provide the cloud services; (b) as further specified by customer
via customer’s use of the cloud services (including the admin console and other functionality of the services); (c) as documented in the form of this
agreement, including these terms; and (d) as further documented in any other written instructions given by customer and acknowledged by Crystal
Instruments Corporation as constituting instructions for purposes of these Terms.

5.2.2 Data Security Crystal Instruments Corporation will use third party technical measures to protect customer data against accidental or unlawful
destruction, loss, alteration, unauthorized disclosure or access. Crystal Instruments Corporation is not responsible or liable for the deletion of or
failure to store any customer data and other communications maintained or transmitted through use of the services. In addition, Crystal Instruments
is not responsible or liable for unauthorized access of the customer data. Customer is solely responsible for securing and backing up data. Crystal

Page 135 of 139

Instruments Corporation does not warrant that the operation of the software or the services will be error-free or uninterrupted. Neither the software
nor the services are designed, manufactured, or intended for high risk activities.

5.2.3 Data Deletion

Deletion by Customer: Crystal Instruments Corporation will enable Customer to delete Customer Data during the Term in a manner consistent with
the functionality of the Services.

Deletion on Termination. On expiry of the Term, Crystal Instruments would delete all Customer Data. Customer acknowledges and agrees that
Customer will be responsible for exporting, before the Term expires, any Customer Data it wishes to retain afterwards.

5.3 Accounts Customer must have an account to use the services, and is responsible for the information it provides to create the account, the
security of passwords for the account, and for any use of its account. If customer becomes aware of any unauthorized use of its password or its
account, Customer will notify Crystal Instruments Corporation as promptly as possible. Crystal Instruments Corporation has no obligation to
provide customer multiple accounts.

5.4 Payment Terms for Cloud Service

5.4.1 Free Quota Certain services are provided to customer without charge up to the fee threshold, as applicable.

5.4.2 Online Billing At the end of the applicable fee accrual period, Crystal Instruments Corporation will issue an electronic bill to customer for
all charges accrued above the fee threshold based on (i) Customer’s use of the Services during the previous fee accrual period; (ii) any additional
units added; (iii) any committed purchases selected; and/or (iv) any package purchases selected. For use above the fee threshold, customer will be
responsible for all fees up to the amount set in the account and will pay all fees in the currency set forth in the invoice. If customer elects to pay by
credit card, debit card, or other non-invoiced form of payment, Crystal Instruments Corporation will charge (and customer will pay) all fees
immediately at the end of the fee accrual period. If customer elects to pay by invoice (and Crystal Instruments Corporation agrees), all fees are due
as set forth in the invoice. Customer’s obligation to pay all fees is non-cancellable. Crystal Instruments Corporation's measurement of Customer’s
use of the services is final. Crystal Instruments Corporation has no obligation to provide multiple bills. Payments made via wire transfer must
include the bank information provided by Crystal Instruments Corporation.

5.4.3 Payment Information Crystal Instruments Corporation will not store any payment related information on its facilities. All payment
information, including recurring payments are stored at a third party facility. Crystal Instruments will not be responsible or liable for unauthorised
access to this information.

5.4.4 Taxes for Cloud Services

(a) Customer is responsible for any taxes, and customer will pay Crystal Instruments Corporation for the services without any reduction for taxes.
If Crystal Instruments Corporation is obligated to collect or pay taxes, the taxes will be invoiced to customer, unless customer provides Crystal
Instruments Corporation with a timely and valid tax exemption certificate authorized by the appropriate taxing authority. In some states the sales
tax is due on the total purchase price at the time of sale and must be invoiced and collected at the time of the sale. If customer is required by law to
withhold any taxes from its payments to Crystal Instruments Corporation, customer must provide Crystal Instruments Corporation with an official
tax receipt or other appropriate documentation to support such withholding. If under the applicable tax legislation the services are subject to local
VAT and the customer is required to make a withholding of local VAT from amounts payable to Crystal Instruments Corporation, the value of
services calculated in accordance with the above procedure will be increased (grossed up) by the customer for the respective amount of local VAT
and the grossed up amount will be regarded as a VAT inclusive price. Local VAT amount withheld from the VAT-inclusive price will be remitted
to the applicable local tax entity by the customer and customer will ensure that Crystal Instruments Corporation will receives payment for its
services for the net amount as would otherwise be due (the VAT inclusive price less the local VAT withheld and remitted to applicable tax authority).
(b) If required under applicable law, customer will provide Crystal Instruments Corporation with applicable tax identification information that
Crystal Instruments Corporation may require to ensure its compliance with applicable tax regulations and authorities in applicable jurisdictions.
Customer will be liable to pay (or reimburse Crystal Instruments Corporation for any taxes, interest, penalties or fines arising out of any mis-
declaration by the Customer.

5.4.5 Invoice Disputes and Refunds Any invoice disputes must be submitted prior to the payment due date. If the parties determine that certain
billing inaccuracies are attributable to Crystal Instruments Corporation, Crystal Instruments Corporation will not issue a corrected invoice, but will
instead issue a credit memo specifying the incorrect amount in the affected invoice. If the disputed invoice has not yet been paid, Crystal Instruments
Corporation will apply the credit memo amount to the disputed invoice and Customer will be responsible for paying the resulting net balance due
on that invoice. To the fullest extent permitted by law, customer waives all claims relating to fees unless claimed within thirty days after charged
(this does not affect any customer rights with its credit card issuer). Refunds (if any) are at the discretion of Crystal Instruments Corporation and
will only be in the form of credit for the services. Nothing in this Agreement obligates Crystal Instruments Corporation to extend credit to any
party.

5.4.6 Delinquent Payments; Suspension Late payments may bear interest at the rate of 1.5% per month (or the highest rate permitted by law, if
less) from the payment due date until paid in full. customer will be responsible for all reasonable expenses (including attorneys’ fees) incurred by
Crystal Instruments Corporation in collecting such delinquent amounts. If customer is late on payment for the services, Crystal Instruments
Corporation may suspend the services or terminate the account(s) and services(s) for breach

5.5 Account Term & Termination

5.5.1 Account Term The term of the account will begin on the effective date and continue until the agreement is terminated.

5.5.2 Termination for Breach Crystal Instruments Corporation may terminate account for breach if: (i) the account(s) is in material breach of the
agreement; or (ii) the customer ceases its business operations or becomes subject to insolvency proceedings and the proceedings are not dismissed
within ninety days.

5.5.3 Termination for Convenience Customer may stop using the cloud service at any time. Customer may terminate the account(s) and services
for its convenience at any time on prior written notice and upon termination, must cease use of the applicable services.

Crystal Instruments Corporation may terminate the account(s) or services for its convenience at any time without liability to Customer.

5.5.4 Effect of Termination If the account(s) or services(s) are terminated, then: (i) the rights granted by one party to the other will immediately
cease; (ii) all fees owed by customer to Crystal Instruments Corporation are immediately due upon receipt of the final electronic bill; (iii) customer
will delete the software, any application and any data; and (iv) upon request, each party will use commercially reasonable efforts to return or destroy
all confidential information of the other party.

5.6 Customer Obligations for Cloud Services

Page 136 of 139

5.6.1 Compliance Customer is solely responsible for account information and data and for making sure its usage of services is consistent with the
terms of the services. Crystal Instruments Corporation reserves the right to review the data for compliance.

5.6.2 Restrictions

Customer will not, and will not allow third parties under its control to: (a) copy, modify, create a derivative work of, reverse engineer, decompile,
translate, disassemble, or otherwise attempt to extract any or all of the source code of the services (except to the extent such restriction is
expressly prohibited by applicable law); (b) sublicense, resell, or distribute any or all of the services; or (c) create multiple account(s) to simulate
or act as a single account or otherwise access the services in a manner intended to avoid incurring fees or exceed usage limits or quotas;

5.6.3 Third Party Components

Third party components (which may include open source software) of the services may be subject to separate license agreements. To the limited
extent a third party license expressly supersedes this agreement, that third party license governs customer’s use of that third party component.

6. EXPORT RESTRICTIONS

The Software may be subject to the export control laws and regulations of the United States. The Licensee must comply with all domestic and
international export control laws and regulations that apply to the Software. These laws include restrictions on destinations, end users, and end
use.

7. THE LICENSEE’S CHOICE OF SOFTWARE

The Software is a standard product, which is delivered by Crystal Instruments with the functions that are specified in the accompanying
documentation. Any assistance provided by Crystal Instruments in connection with the choice of the Software will be based on the Licensee’s
information about the Licensee’s business provided to Crystal Instruments. The Licensee shall be responsible for both the completeness and the
accuracy of such information. Crystal Instruments makes no representations or warranties as to whether the Software meets the functionality or
other requirements of the Licensee and assumes no liability therefor.

8. WARRANTIES AND DISCLAIMERS

8.1 The Licensee shall be under obligation to examine and test the Software immediately after installation of the Software.

8.2 On condition that Crystal Instruments is fully paid for the Software that Customer purchased, Crystal Instruments warrants that the Software
will be free of material defects for a period of 12 months after the delivery of the Software to Licensee (the “Warranty Period”). A defect in the
Software shall be regarded as material if it has a material adverse effect on the functionality of the Software as a whole or if it prevents operation
of the Software. Minor bugs or functions that can be improved are not viewed as a defect.

8.3 If the Licensee documents that there is a material defect in the Software, and notifies Crystal Instruments of the defect within the Warranty
Period, Crystal Instruments will, at its discretion, without charge: (a) deliver a new version of the Software without the material defect, or (b)
remedy the defect, or (c) provide Licensee with instructions for procedures or methods (workarounds) which result in the defect not having a
significant effect on the Licensee’s use of the Software. If Crystal Instruments fails to do any of the above within 30 days (or such longer period
of time as is reasonably necessary given the nature of the defect), the Licensee may terminate this Agreement upon notice to Crystal Instruments,
in which event Crystal Instruments will refund to Licensee a pro-rated portion of the license fee paid by Licensee for the Software (based on the
portion of the Warranty Period remaining as of the date Licensee notified Crystal Instruments of the defect), provided Licensee returns to Crystal
Instruments all the Licensee's versions and copies of the Software, and all manuals and accompanying documentation. This paragraph states the
sole obligations of Crystal Instruments, and the sole remedy of Licensee, for defects in the Software, and the parties shall not be entitled to bring
further claims against each other.

8.4 EXCEPT FOR THE EXPRESS WARRANTY IN SECTION 7.2 ABOVE, THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT
ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF ACCURACY,
COMPATIBILITY WITH OTHER SOFTWARE OR HARDWARE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. CRYSTAL INSTRUMENTS DOES NOT WARRANT THAT THE OPERATION OF THE SOFTWARE WILL BE
WITHOUT INTERRUPTIONS, DEFECT-FREE, OR ERROR-FREE OR THAT PRODUCT DEFECTS OR ERRORS CAN OR WILL BE
REMEDIED OR CORRECTED.

9. CONSENT TO USE OF DATA

Licensee agrees that Crystal Instruments and its affiliates may, through Internet connections established by the Software or otherwise, collect
technical information related to Licensee’s use of the Software, including but not limited to the serial numbers of Crystal Instruments hardware
with which the Software is used, email addresses of users, and technical information relating to Licensee’s computers, systems, application
software, and peripherals. Licensee agrees that Crystal Instruments may use such information to facilitate the provision of Software updates and
product support, to improve Crystal Instruments’ products and/or services, or to provide products or services to Licensee. Crystal Instruments
will not, however, publish or disclose such information in a form that may personally identify Licensee.

10. LIABILITY AND LIMITATION OF LIABILITY

10.1 CRYSTAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES (INCLUDING BUT NOT LIMITED TO LOSS OF EXPECTED PROFIT, LOSS OF DATA OR THEIR RECOVERY, LOSS OF
GOODWILL OR ANY OTHER SIMILAR DAMAGES), UNDER ANY LEGAL THEORY, IN CONNECTION WITH THE USE OF THE
SOFTWARE OR THE INABILITY TO USE THE SOFTWARE, REGARDLESS OF WHETHER CRYSTAL INSTRUMENTS HAS BEEN
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.

10.2 IN NO EVENT SHALL THE TOTAL LIABILITY OF CRYSTAL INSTRUMENTS TO LICENSEE ARISING OUT OF OR RELATING
TO THE SOFTWARE EXCEED THE LICENSE FEE PAID BY LICENSEE FOR THE SOFTWARE.

10.3 Crystal Instruments shall not be liable for any errors, defects, or deficiencies which are not related to the Software, nor shall Crystal
Instruments be liable for the integration or interaction between the Software and the Licensee’s existing hardware and software. Crystal
Instruments shall not be liable for the effect of any upgrades on existing hardware, software, or adjustments for the Software regardless of
whether such adjustments were developed by Crystal Instruments.

10.4 Crystal Instruments shall have no liability of any nature relating to software or content of third parties that may be included in the Software.
10.5 The limitations in this Section 9 will apply even in the event of failure of essential purpose of any remedy.

11. GOVERNMENT USERS

Page 137 of 139

The Software and related documentation are "Commercial Items", as that term is defined at 48 C.F.R. §2.101, consisting of "Commercial
Computer Software" and "Commercial Computer Software Documentation”, as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R.
§227.7202, as applicable. The Software and documentation are being licensed to U.S. Government end users (a) only as Commercial Iltems and
(b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.

12. TERM AND TERMINATION

12.1 The term of this Agreement, and Licensee’s license rights, which may be referred to the activation period of license, shall be as indicated in
Licensee’s order. Such term may be perpetual, or may be of limited duration in the event the Software is provided to Licensee for demonstration,
evaluation or other similar purposes. Licensee acknowledges that if Licensee’s rights are of limited duration, the license key provided to
Licensee to enable use of the Software may cease to allow use of the Software after expiration of such activation period.

12.2 Upon termination of the Agreement for any reason, the Licensee is obliged to immediately return or destroy the Software and all copies
thereof as directed by Crystal Instruments and, if requested by Crystal Instruments, to certify in writing as to the destruction or return of the
Software and all copies thereof.

13. DEFAULTS

If the Licensee is in default of the Agreement, the Licensee’s rights under the Agreement shall terminate with immediate effect, and the Licensee
shall be under an obligation to return the Software, including any back-up copies and accompanying documentation, without a right to repayment.
In addition, Crystal Instruments shall be entitled to damages for any loss, which Crystal Instruments may suffer, in accordance with the general
rules of United States law, including all losses, damages, costs, expenses, etc., without any limitations, incurred or suffered by Crystal
Instruments as a result of claims from any third party in relation to the Licensee’s breach of the Agreement.

14. UPDATES AND RENEW

14.1 For one year after the delivery of the Software, Crystal Instruments will provide Licensee, free of charge, with any updates to the Software
that Crystal Instruments makes generally available to its customers. Licensee may renew such right to receive updates, for additional periods of
one year each, by paying Crystal Instruments the support renewal fee in effect at the time of such renewal. Licensee acknowledges that if
Licensee elects not to renew the right to receive updates, the license key provided to Licensee to enable use of the Software may thereafter cease
to allow installation and use of updates. Notwithstanding the above, Crystal Instruments may charge an additional license fee for any optional
upgrades Crystal Instruments may release, which include significant new functionality and which Crystal Instruments does not make available
without charge to its customers generally.

14.2 Crystal Instruments and the Licensee can agree on the other term about the period of software update after the sales.

14.3 Crystal Instruments has the rights to control the period of software update through various technical means including online activation or
certain algorithm embedded in the license keys. The Licensee has no rights to reverse engineer, decompile, or disassemble the algorithm.

15. CHOICE OF LAW AND COURT OF JURISDICTION

15.1 The Agreement shall be governed by the laws of the State of California, and applicable United States federal law.

15.2 Any suit or proceeding arising out of this Agreement shall be brought only in a court located in Santa Clara County, California, and the
parties submit to the exclusive jurisdiction and venue of such courts; provided, however, that Crystal Instruments may seek injunctive relief for
any breach of this Agreement by Licensee in any court that would otherwise have jurisdiction over Licensee.

16. GENERAL PROVISIONS

16.1 Failure by Crystal Instruments to exercise or enforce any rights hereunder shall not be deemed to be a waiver of any such rights nor affect
the exercise or enforcement thereof at any time or times thereafter.

16.2 If any provision or part of this Agreement is or is held by any court of competent jurisdiction to be unenforceable or invalid, such
unenforceability or invalidity shall not affect the enforceability of any other provision.

16.3 This Agreement constitutes the entire agreement between the parties with respect to its subject matter and supersedes all prior or
contemporaneous understandings regarding that subject matter. No amendment to or modification of this Agreement will be binding unless in
writing and signed by an authorized officer of Crystal Instruments.

16.4 Licensee may not transfer or assign Licensee’s rights under this Agreement to any third party without the prior written consent of Crystal
Instruments, including by operation of law.

17. THIRD PARTY SOFTWARE LICENSE/NOTICES

Crystal Instruments Software uses a number of software products from 3™ parties that are under one of the following licenses, Apache License,
GPL License, LGPL License and MIT License. Please contact Crystal Instruments to obtain the most updated list of 3™ party software that are
incorporated in the Software.

License Type Definition

*Apache License

Apache License is a free software license authored by the Apache Software Foundation (ASF). The Apache License requires preservation of

the copyright notice and disclaimer. Like any free software license, the Apache License allows the user of the software the freedom to use the
software for any purpose, to distribute it, to modify it, and to distribute modified versions of the software, under the terms of the license, without
concern for royalties.

The 2.0 version of the Apache License was approved by the ASF in 2004. The goals of this license revision have been to reduce the number of
frequently asked questions, to allow the license to be reusable without modification by any project (including non-ASF projects), to allow the
license to be included by reference instead of listed in every file, to clarify the license on submission of contributions, to require a patent license
on contributions that necessarily infringe the contributor's own patents, and to move comments regarding Apache and other inherited attribution
notices to a location outside the license terms

Page 138 of 139

*GPL License

The GNU General Public License (GNU GPL or GPL) is the most widely used free software license, which guarantees end users (individuals,
organizations, companies) the freedoms to use, study, share (copy), and modify the software. Software that ensures that these rights are retained is
called free software. The license was originally written by Richard Stallman of the Free Software Foundation (FSF) for the GNU project.

*LGPL License

LGPL (formerly the GNU Library General Public License) is a free software license published by the Free Software Foundation (FSF). The
LGPL allows developers and companies to use and integrate LGPL software into their own (even proprietary) software without being required
(by the terms of a strong copyleft) to release the source code of their own software-parts.

*MIT License
The MIT License is a permissive free software license originating at the Massachusetts Institute of Technology (MIT), The MIT License is

compatible with many copyleft licenses, such as the GNU General Public License (GNU GPL). Any software licensed under the terms of the
MIT License can be integrated with software licensed under the terms of the GNU GPL.

--- Updated May 11, 2022

Page 139 of 139

