
Page 0 of 139

ATFX SIGNAL READER API (C#, PYTHON, MATLAB,
LABVIEW)

 www.crystalinstruments.com | info@go-ci.com

August 4, 2022
Document ver. 3.6

© Crystal Instruments Corporation

Page 1 of 139

Contents

ATFX SIGNAL READER API (C#, PYTHON, MATLAB, LABVIEW) 6

ATFX API PACKAGE 10

Package Contents ...10

How to Install the ATFX API ..10

Unreadable DLL Files Despite Correct File Path ..10

Blank CHM File Display Issue ..10

Recommended Versions for Python, Matlab & LabVIEW ...11

QUICK START 13

Reading a Frequency Domain Signal Frame ...13

C# Code ...14

Python Code ...15

Matlab Code ...17

Reading a Time Domain Signal Frame ..18

C# Code ...19

Python Code ...20

Matlab Code ...21

Extracting the Date and Time of a Recording ...23

C# Code ...24

Python Code ...25

Matlab Code ...27

Reading GPS Data from a ATFX File ...28

C# Code ...29

Python Code ...31

Matlab Code ...32

ATFX API C# CODE EXAMPLES 34

Building the C# Demo ...34

Importing and Referencing C# DLL Files ...37

Opening a ATFX File – Start Here ..38

What is a Recording vs. Signal? ..38

Finding the Signal for a particular channel ..39

What is a Frame? ...39

An end-to-end code example ...41

Additional File Components - .TS and .GPS ...41

Opening a Time Stamp Signal (TS) or GPS Location File ..42

Page 2 of 139

Reading the Record Properties...43

Calling Individual Recording Property ..44

GetListOfProperties ...44

Reading the GPS Data ...45

Extracting the Date and Time of a Recording ...47

Reading the Input Channel Table Data ..49

Reading the Input Channel Data Through Utility Class ..51

Calling Individual Properties of Input Channel ...51

Reading the Signal Properties ..52

Using a List to Store and Recall Signals ..53

Basic Signal Information ...54

Advance Signal Information ..55

Advance Generated Time ..59

Reading the Data Values of a Signal Frame ..60

Reading Frequency Signal Frame Data ...63

Getting Spectrum Types or Engineering Units ..66

Reading NVH Test Configuration Parameters ..67

Reading a Signal NVH Parameter Key ..69

Reading a Signal NVH Parameter Key Data Type ..69

Reading a List of NVH Parameter Keys Through Utility Class ..69

Reading a NVH Parameter Key & Type Through Utility Class ..70

Reading Merged Information ...71

ATFX API METHOD LIST 73

List of Available Modules ...73

Recording Manager Module ..73

ODS Recording Module ..74

ODS Signal Module ...76

DateTimeNano Module ...79

Utility Module ..80

Property Glossary...81

RecordingProperty ...81

SignalProperties ...82

NVHParameterSet Parameter Keys ...83

AoEnvironment ..86

Page 3 of 139

NVHMeasurement ...86

NVHEnvironment ..87

ATFX API CODING LANGUAGES 88

C# Demo Program ...88

Python Demo Script ...94

Importing C# DLL files ...94

Python Script Code Example ...95

LabVIEW Demo Script..98

Importing C# DLL files ...98

LabVIEW Block Diagram Example ..100

Matlab Demo Script ...102

Importing C# DLL files ...102

Matlab Script Code Example ...103

POST ANALYSIS SOFTWARE INTEGRATES ATFX API 105

The Feature that Utilizes ATFX Reader API in PA Software ...105

APPENDIX 107

Time Domain Signals ..107

Time Stream ...107

Time Block...107

Frequency Domain Signals ..108

Fast Fourier Transform Spectral Analysis Linear (FFT) ...109

Auto Power Spectrum (APS) ...112

Spectrum Types ...113

Cross Power Spectrum (CPS) ..117

Frequency Response Function (FRF) ..119

Sine Spectrum ..122

Shock Response Spectrum (SRS) ..124

Order Spectrum ..127

Octave Spectrum ..128

Compution of Frequency Spectrum Signals ..129

Linear Spectrum ...129

Auto Power Spectrum ..130

Cross Power Spectrum ...131

Frequency Response Function ...131

Order Spectrum ..133

Page 4 of 139

END USER LICENSE AGREEMENT FOR CRYSTAL INSTRUMENTS SOFTWARE 135

Page 5 of 139

Information in this document is subject to change without notice. No part of this document may be

reproduced or transmitted in any form, for any purpose, without the written permission of Crystal

Instruments Corporation (“Crystal Instruments”).

By installing, copying or using the Software, the user agrees to be bound by the terms of the

Crystal Instruments End User License Agreement which is a legally binding agreement between

the user (“the Licensee”) and Crystal Instruments for the Crystal Instruments software, which

includes software components, tools, and written documentation (“Software”).

Crystal Instruments makes no warranties on the Software, whether express or implied, nor implied

warranties of merchantability or fitness for a particular purpose. Crystal Instruments does not

warrant your data, that the software will meet your requirements, or that the operation will be

reliable or error free. The Licensee of the Software assumes the entire risk of use of the Software

and the results obtained from the use of the software. Crystal Instruments shall not be liable for

any incidental or consequential damages, including loss of data, lost profits, the cost of cover, or

other special or indirect damages.

Copyright © 2005-2022 Crystal Instruments Corporation. All rights reserved.

All trademarks and registered trademarks used herein are the property of their respective holders.

Page 6 of 139

ATFX Signal Reader API (C#, python, matlab, LabView)

The Crystal Instruments (CI) ATFX ODS Signal Reader Application Programming Interface

(API) consists of two Windows Dynamic-Linked Libraries (DLL) providing third-party

applications an interface to access the signal data stored in the ASAM Transport Format XML

(ATFX) files.

ATFX files are formatted according to the Association for Standardization of Automation and

Measuring Systems (ASAM) Open Data Services (ODS) standardization. This is a standard

dedicated for storing vibration data and its different forms. CI software natively stores its data

using the ATFX format, for both signals and recordings.

For details about the ATFX ODS format please refer to the official website:

https://www.asam.net/standards/detail/ods/wiki/

ATFX files are xml-based files which store the signal data along with all the attributes of the

signal data including data and time or recording, length of recording, number of channels,

channel parameters (e.g., input channel sensor and sensitivities), geographic coordinates,

sampling rate, high pass filter, etc.

ATFX files also reference a DAT file that are well-defined for storing both raw time data as well

as processed spectral data, calculated from functions including Fourier Transform, Frequency

Response Functions, Cross-Power Spectrum, Octave Spectrum, etc. The .dat file is an important

part of the ATFX file and, if missing, the ATFX API may not properly read the ATFX file.

https://www.asam.net/standards/detail/ods/wiki/

Page 7 of 139

There are two additional file types that the .aftx file references that contain raw data: .ts and .gps.

The .ts file is a TimeStamp recording that contains an accurate measure of when a recording was

saved with accuracy down to nanoseconds. The .gps file is a GPS recording that contains

locational data of where a recording was saved (e.g., latitude, longitude, altitude).

Page 8 of 139

The Signal Reader API provides end-users with a streamlined file reading and browsing library

to decode ATFX, TS and GPS files. Users can integrate the API with their own custom

application. Currently, we support Windows-based programs, ideally written in C#. The same

API also supports Python, MatLab and LabView.

The API offer direct calls to the ASAM ODS model classes and objects used to store data saved

in the ATFX file, such as calling the recording NVHMeasurement and NVHEnvironment to read

the DateTime with nano seconds elapsed.

Page 9 of 139

The API also provides a Utility class that has methods to return data from the ATFX file without

the user needing to understand the complexity of the ASAM ODS model classes. Such as the

Utility GetListOfAllSignals that return a list of signals that a ATFX file contains or the Utility

GetChannelTable that return a 2D list of strings, where each list is an input channel row.

It is also possible to read any of the signals, time or frequency, in other engineering units (EU),

such as Acceleration m/s2 to g. As well as reading frequency domain signals in other spectrum

types, such as EUrms to EUPeak. All done by the signal method GetFrame where users can pass

in parameters to return a converted signal frame data saved in the ATFX file.

When the ATFX API read the ATFX file, there may be some differences in the signal frame

data, this is due to some display related parameters such as spectrum type not being saved into

the ATFX file. By default, the spectrum type is EUrms2. Engineering units are saved into the

ATFX file and should be the the default EU when reading the signal frame.

Page 10 of 139

ATFX API Package

Package Contents
Crystal Instruments will provide a zip file or software installer exe file that contains the

following:

1. API DLL files

2. API user interface demo program - An executable file that calls ATFX reader API dlls to

access information stored in Crystal Instruments ATFX files

a. Demo program source code written in C#, Python, LabVIEW and Matlab

3. API technical documents

a. API Class Methods Library

b. API Assembly Documentation

How to Install the ATFX API
Run the installer and it should install the files to the default location:

C:\Program Files\Crystal Instruments\Signal Reader API

It is recommended to move any of the coding files outside of the Program Files folder to avoid

admin permissions when editing and saving. The dll files can be moved anywhere, so long any

custom scripts know the exact file path location of those dll files.

Unreadable DLL Files Despite Correct File Path

Blank CHM File Display Issue
There may be chances where the CHM file displays a blank screen on the right side of the

window or a script reading the correct file path and that the dll files exist but throws an error

stating that it can not find the dll files. One of the solutions is that in the dll file properties have

an additional clickable box or button called Unblock and text saying, “This file came from

another computer and might be blocked to help protect this computer.”. Unblocking the dll file

should let the scripts relying on the dll files to be able to find and read them.

This issue occurs because of the computer protecting itself from any files that came from another

computer, thus it will sometimes mark files as potentially unsafe and block it so it is not

readable.

Page 11 of 139

The C# Demo exe file should fine on its own as it has embedded the dll files into the exe file.

Recommended Versions for Python, Matlab & LabVIEW
For the Python and Matlab scripts to work, please edit the scripts and change the file path

location to point to the dll and recording files.

It is recommended to use Matlab version R2021b or later. And a compatible version of Python

for the Python.NET package, such as 3.8 or 2.7. Anything above 3.8 can work by installing a

pre-release version of Python.NET.

The Python scripts also comes with Matplotlib for plotting signal frame data and Numpy for

converting C# array to Python array.

For the LabVIEW ATFX API example to work, please use the latest version of LabVIEW, such

as LabVIEW 2021 or 2021 SP1 32-bit version. And use the provided dll files in the LabVIEW

ATFX API Demo -> Private folder.

Page 12 of 139

Page 13 of 139

Quick Start

This section of the manual will be focused on a quick reference guide to give the user knowledge

of what they need to do. For example, how to read an Auto Power Spectrum signal in C#, Python

and Matlab or read the nano seconds from a recording.

Reading a Frequency Domain Signal Frame
Frequency domain data is read from time domain data that is converted through mathematical

transforms such as the Fourier Transform.

To read a frequency domain signal, the code must utilize the ISignal.GetFrame(int index,

_SpectrumScalingType spectrumType, string engineeringUnit) to return a signal frame data.

The _SpectrumScalingType and the string format for the engineering units can be found in the

CHM class library file. Any signal can call the GetFrame method and it will return that signal

frame data.

For Real & Imaginary pair spectrum signals, such as Frequency Response Function (FRF), Fast

Fourier Transform (FFT) and Cross Power Spectrum (CPS), the Y data may be double the size of

the X data. This is because the Real & Imaginary pairs are store together in the Y data, thus the

first number of the pair is the Real and the second is the Imaginary.

A frame data example:

Y data frame size: 1024, X data frame size: 512

[0]: Real, [1]: Imaginary, [2]: Real, [3]: Imaginary, … [N]: Real, [N+1]: Imaginary

It is also necessary to call the ISignal.GetLabel(int dimension) and ISignal.GetYLabel() to get

the signal X, Y and Z data labels. The GetYLabel method is the preferred method to get the Y

data label for frequency signals, especially for reading Real & Imaginary pairs from FRF, FFT,

and CPS. As the GetYLabel will return a list of strings, where the first string is the label for the

actual Y data unit and spectrum type, such as (m/s2)2 (RMS) or Real (m)/(m/s2). And the second

string is the label for the Imaginary of Y data.

Here is a list of frequency signals, their short form, and examples:

Frequency Domain Full Name EDM / ATFX

Abbreviation

Signal Example

Auto Power Spectrum APS APS(Ch#)

APS(drive)

control(f)

noise(f)

profile(f)

HighAbort(f)

HighAlarm(f)

LowAbort(f)

LowAlarm(f)

Frequency Response Function FRF FRF(Ch#, Ch$)

Page 14 of 139

H H(Ch#, Ch$)

H(f)

hinv(f)

Fast Fourier Transform FFT FFT(Ch#)

Cross Power Spectrum CPS CPS(Ch#, Ch$)

Coherence Function COH COH(Ch#, Ch$)

Sine Spectrum Spectrum Spectrum(Ch#)

Shock Response Spectrum MaxiSRS

PosSRS

NegSRS

MaxiSRS(Ch#)

PosSRS(Ch#)

NegSRS(Ch#)

Order Spectrum ORDSpec ORDSpec(Ch#)

Octave Spectrum OCT OCT(Ch#)

C# Code
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Reflection;
using System.Diagnostics;
// DLL file imports
using EDM.RecordingInterface;
using EDM.Recording;
using ASAM.ODS.NVH;
using Common;
using Common.Spider;
using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘APS(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'APS(Ch4)').First();

// Get the signal frame data through the ISignal.GetFrame(int, _SpectrumScalingType,
string)
double[][] frame = signalCh4.GetFrame(0, _SpectrumScalingType.EURMS2,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);

// Get the X & Y data labels
string xDataLabel = signalCh4.GetLabel(0);
string yDataLabel = signalCh4.GetYLabel()[0];
string zDataLabel;

Page 15 of 139

// Get the Z data label if it exists
if(frame.Length == 3)
 zDataLabel = signalCh4.GetLabel(2);

// Get the 2nd Y data label is the signal if FRF, FFT, H or CPS
if(signalCh4.Type == SignalType.Frequency && signalCh4.Name != "H(f)" &&
 (signalCh4.Properties.NvhType == _NVHType.FrequencyResponseSpectrum ||
 signalCh4.Properties.NvhType == _NVHType.CrosspowerSpectrum ||
 signalCh4.Properties.NvhType == _NVHType.ComplexSpectrum))
{
 string yDataLabel2 = signalCh4.GetYLabel()[1];
}

Python Code
#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Linq')
clr.AddReference('System.Collections')

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dll imports
from EDM.Recording import *
from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *
from EDM.Utils import *
from Common import *
from Common import _SpectrumScalingType
from Common.Spider import *
from System import *
from System.Diagnostics import *
from System.Reflection import *
from System.Text import *
from System.IO import *

Page 16 of 139

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording
recordingPathRegular = recordingPath + "SIG0000.atfx"

#OpenRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string
dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Get a list of signals
signalList = Utility.GetListOfAllSignals(recording)

Get the frame of a frequency signal depending on where it is in the list
The Convert.ToInt32 is necessary for the the enum AccelerationUnitType to be read as
a int instead of a string
signal = signalList[12]
frame = signal.GetFrame(0, _SpectrumScalingType.EUPeak,
AccelerationUnitEnumString.ArrayString[Convert.ToInt32(AccelerationUnitType.g)])

print("X: ", frame[0][0])
print("Y: ", frame[1][0])
print("X: ", frame[0][1])
print("Y: ", frame[1][1])
print("X: ", frame[0][2])
print("Y: ", frame[1][2])

frameX = np.fromiter(frame[0], float)
frameY = np.fromiter(frame[1], float)

plt.plot(frameX,frameY,'r')
plt.xlabel(signal.Properties.xQuantity + " (" + signal.Properties.xUnit + ")")
plt.ylabel(signal.Properties.yQuantity + " (" + signal.Properties.yUnit + ")")
plt.title("Plot of the " + signal.Name)
plt.legend(signal.Name)
plt.show()

Page 17 of 139

Matlab Code
% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

% Create a atfx recording instance
rec =
EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul 01, 2022 11-20-16\SIG0004.atfx');

% Use item function to get a time signal instance
sig = Item(rec.Signals,9);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{0}",sig.Properties.xUnit));
disp(System.String.Format("Y Unit:{0}",sig.Properties.yUnit));

% Assign the engineering unit
engiUnit =
EDM.RecordingInterface.AccelerationUnitEnumString.ArrayString(System.Convert.ToInt3
2(EDM.RecordingInterface.AccelerationUnitType.g)+1);
disp(engiUnit);

disp("display signal frame data");
% Get signal frame
frame = sig.GetFrame(0, Common.('_SpectrumScalingType').EURMS2, engiUnit);
% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);
% Long format, showing more decimal places
format long;
% Display the cell(frame) content
%celldisp(matFrame);
% Convert back to mat array
xVals = cell2mat(matFrame(1));

Page 18 of 139

yValues = cell2mat(matFrame(2));

%plot the signal
plot(xVals,yValues,'r');
xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");
title("Plot of the "+string(sig.Name));
legend(string(sig.Name));

Reading a Time Domain Signal Frame
Time domain data is read from live monitoring of systems and signals in a test over a period of

time.

To read a time domain signal, the code must utilize the ISignal.GetFrame(int index,

SpectrumScalingType spectrumType, string engineeringUnit) to return a signal frame data.

While the _SpectrumScalingType is unnecessary for a time domain signal, passing it in the

method will not affect the returned frame data. The method offers a parameter to pass in an

engineering unit to change the returned frame data. The string format for the engineering units

can be found in the CHM class library file. Any signal can call the GetFrame method and it will

return that signal frame data.

It is also necessary to call the ISignal.GetLabel(int dimension) to get the signal X, Y and Z

data labels. The ISignal.GetYLabel() can also get the Y data label by referring to the first string

in the returned list of strings.

Here is a list of frequency signals, their short form, and examples:

Page 19 of 139

Time Domain Full Name EDM / ATFX

Abbreviation

Signal Example

Time Block

NonEquidistant

Block Block(Ch#)

Block(drive)

control(t)

noise(t)

profile(t)

C# Code
using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Reflection;
using System.Diagnostics;
// DLL file imports
using EDM.RecordingInterface;
using EDM.Recording;
using ASAM.ODS.NVH;
using Common;
using Common.Spider;
using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)').First();

// Get the signal frame data through the ISignal.GetFrame(int, _SpectrumScalingType,
string)
double[][] frame = signalCh4.GetFrame(0, _SpectrumScalingType.Unknown,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);

// Get the X & Y data labels
string xDataLabel = signalCh4.GetLabel(0);
string yDataLabel = signalCh4.GetLabel(1);
string yDataLabelAlt = signalCh4.GetYLabel()[0];
string zDataLabel;

// Get the Z data label if it exists
if(frame.Length == 3)
 zDataLabel = signalCh4.GetLabel(2);

Page 20 of 139

Python Code
#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Linq')
clr.AddReference('System.Collections')

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dll imports
from EDM.Recording import *
from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *
from EDM.Utils import *
from Common import *
from Common import _SpectrumScalingType
from Common.Spider import *
from System import *
from System.Diagnostics import *
from System.Reflection import *
from System.Text import *
from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording
recordingPathRegular = recordingPath + "SIG0000.atfx"

#OpenRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string
dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Page 21 of 139

Get a list of signals
signalList = Utility.GetListOfAllSignals(recording)

Get the frame of a frequency signal depending on where it is in the list
The Convert.ToInt32 is necessary for the the enum AccelerationUnitType to be read as
a int instead of a string
signal = signalList[4]
frame = signal.GetFrame(0, _SpectrumScalingType.Unknown,
AccelerationUnitEnumString.ArrayString[Convert.ToInt32(AccelerationUnitType.g)])

print("X: ", frame[0][0])
print("Y: ", frame[1][0])
print("X: ", frame[0][1])
print("Y: ", frame[1][1])
print("X: ", frame[0][2])
print("Y: ", frame[1][2])

frameX = np.fromiter(frame[0], float)
frameY = np.fromiter(frame[1], float)

plt.plot(frameX,frameY,'r')
plt.xlabel(signal.Properties.xQuantity + " (" + signal.Properties.xUnit + ")")
plt.ylabel(signal.Properties.yQuantity + " (" + signal.Properties.yUnit + ")")
plt.title("Plot of the " + signal.Name)
plt.legend(signal.Name)
plt.show()

Matlab Code
% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

Page 22 of 139

% Create a atfx recording instance
rec =
EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul 01, 2022 11-20-16\SIG0004.atfx');

% Use item function to get a time signal instance
sig = Item(rec.Signals,0);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{0}",sig.Properties.xUnit));
disp(System.String.Format("Y Unit:{0}",sig.Properties.yUnit));

disp("display signal frame data");
% Get signal frame
frame = sig.GetFrame(0);
% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);
% Long format, showing more decimal places
format long;
% Display the cell(frame) content
%celldisp(matFrame);
% Convert back to mat array
xVals = cell2mat(matFrame(1));
yValues = cell2mat(matFrame(2));

%plot the signal
plot(xVals,yValues,'r');
xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");
title("Plot of the "+string(sig.Name));
legend(string(sig.Name));

Page 23 of 139

Extracting the Date and Time of a Recording
A recording stores Time and Date in a header file that indicates when the recording was created

and saved. For the ATFX file, it stores this information in a DateTime object with accuracy up to

millisecond. Sometimes this accuracy is not enough, thus a new data object is created with the

purpose of storing better accuracy up to nanoseconds known as DateTimeNano. The

DateTimeNano object has a property that stores the millisecond, microsecond and nanosecond

together that can be retrieved and separated into each time unit. A .ts file stores the

DateTimeNano object that the ATFX file references.

To extract and read the time data that a recording has, users will have to import and use the

DateTimeNano object, which is an extension of the DateTime that includes nanosecond data.

To use the DateTimeNano class, users will need to import Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are referenced in the link below:

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Name Type Descriptions

IsNanoTime DateTime Gets whether nanoseconds exists / not

equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time

and nanosecond time

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Page 24 of 139

C# Code
The following code snippet shows how to extract, create and display the DateTimeNano object

properties.

using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Reflection;
using System.Diagnostics;
// DLL file imports
using EDM.RecordingInterface;
using EDM.Recording;
using ASAM.ODS.NVH;
using Common;
using Common.Spider;
using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

if (rec is ODSNVHATFXMLRecording nvhRec)
{
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

 DateTimeNano createTimeLocal = new DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);
 DateTimeNano createTimeUTC = new
DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null),
nvhMeasurement.NanoSecondElapsed);

 bool isNanoTime = createTimeUTC.IsNanoTime;
 uint milli_micro_nano = createTimeUTC.ms_us_ns;
 ulong totalNanoSeconds = createTimeUTC.TotalNanoSeconds;
 string nanoString = createTimeUTC.ToNanoString();

 int ms = (int)(createTimeUTC.ms_us_ns / 1e6);
 int us = (int)(createTimeUTC.ms_us_ns / 1e3 % 1e3);
 int ns = (int)(createTimeUTC.ms_us_ns % 1e3);
 // Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns
 string customFormat = string.Format("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}",
createTimeUTC.Year, createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour,
createTimeUTC.Minute, createTimeUTC.Second, ms, us, ns);
}

Milisecond.Microsecond.Nanosecond

000/000/000

Page 25 of 139

Python Code
#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Linq')
clr.AddReference('System.Collections')

#---C# .NET imports & dll imports
from EDM.Recording import *
from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *
from EDM.Utils import *
from Common import *
from Common import _SpectrumScalingType
from Common.Spider import *
from System import *
from System.Diagnostics import *
from System.Reflection import *
from System.Text import *
from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording
recordingPathRegular = recordingPath + "SIG0000.atfx"

#OpenRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string
dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Create ODS NVH ATFXML Recording object that contains NVH Measurement & NVH
Environment using the file path

Page 26 of 139

recording = ODSNVHATFXMLRecording(recordingPathRegular)

If the above created object is ODSNVHATFXMLRecording, it should be able to get the
NVH Measurement & NVH Environment and assigned them
if type(recording) is ODSNVHATFXMLRecording:
 nvhRec = recording
 nvhMeasurement = nvhRec.Measurement

 # Create DateTimeNano objects for local and UTC time zones
 createTimeLocal = DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed)
 createTimeUTC = DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime,
None), nvhMeasurement.NanoSecondElapsed)

 print("Printing UTC")
 print(createTimeUTC.IsNanoTime)
 print(createTimeUTC.ms_us_ns)
 print(createTimeUTC.TotalNanoSeconds)
 print(createTimeUTC.ToNanoString())

 ms = createTimeUTC.ms_us_ns / 1e6
 us = createTimeUTC.ms_us_ns / 1e3 % 1e3
 ns = createTimeUTC.ms_us_ns % 1e3
 # Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns
 print("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}".format(createTimeUTC.Year,
createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour, createTimeUTC.Minute,
createTimeUTC.Second, ms, us, ns))

 print("\nPrinting local")
 print(createTimeLocal.IsNanoTime)
 print(createTimeLocal.ms_us_ns)
 print(createTimeLocal.TotalNanoSeconds)
 print(createTimeLocal.ToNanoString())

 ms = createTimeUTC.ms_us_ns / 1e6
 us = createTimeUTC.ms_us_ns / 1e3 % 1e3
 ns = createTimeUTC.ms_us_ns % 1e3
 # Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns
 print("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}".format(createTimeLocal.Year,
createTimeLocal.Month, createTimeLocal.Day, createTimeLocal.Hour,
createTimeLocal.Minute, createTimeLocal.Second, ms, us, ns))

Page 27 of 139

Matlab Code
% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

% Create a atfx recording instance
rec = EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Downloads\gps test
example\{4499520}_REC_{20220419}(1).atfx');

% Assign the NVH Measurement and NVH Environment
nvhMeasurement = rec.Measurement;

% Create the DateTimeNano in UTC and or Local
createTimeLocal = Common.DateTimeNano(rec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);
createTimeUTC =
Common.DateTimeNano(Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, []),
nvhMeasurement.NanoSecondElapsed);

% Display nano type properties
disp('Printing UTC');
disp(createTimeUTC.IsNanoTime);
disp(createTimeUTC.ms_us_ns);
disp(createTimeUTC.TotalNanoSeconds);
disp(createTimeUTC.ToNanoString());

ms = (createTimeUTC.ms_us_ns - rem(createTimeUTC.ms_us_ns, 1e6)) / 1e6;
us = rem(createTimeUTC.ms_us_ns / 1e3, 1e3);
ns = rem(createTimeUTC.ms_us_ns, 1e3);

% Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns
str = sprintf('%d/%d/%d/%d/%d/%d/%d/%d/%d', createTimeUTC.Year,
createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour, createTimeUTC.Minute,
createTimeUTC.Second, ms, us, ns);
disp(str);

% Display nano type properties
disp('Printing local');
disp(createTimeLocal.IsNanoTime);
disp(createTimeLocal.ms_us_ns);
disp(createTimeLocal.TotalNanoSeconds);
disp(createTimeLocal.ToNanoString());

ms = (createTimeLocal.ms_us_ns - rem(createTimeLocal.ms_us_ns, 1e6)) / 1e6;
us = rem(createTimeLocal.ms_us_ns / 1e3, 1e3);
ns = rem(createTimeLocal.ms_us_ns, 1e3);

% Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns
str = sprintf('%d/%d/%d/%d/%d/%d/%d/%d/%d', createTimeLocal.Year,
createTimeLocal.Month, createTimeLocal.Day, createTimeLocal.Hour,
createTimeLocal.Minute, createTimeLocal.Second, ms, us, ns);
disp(str);

Page 28 of 139

Reading GPS Data from a ATFX File
A recording recorded in a device that can record GPS data such as the Crystal Instruments

Ground Recording System (CI-GRS) can save location data into a .gps file that the ATFX file

references.

To read the GPS data, it is extracted from the IRecording object as a

ODSNVHATFXMLRecording object and locating the Measurement and Environment

property. These properties are AoMeasurement and AoEnvironment, which can be converted

into NVHMeasurement and NVHEnvironment.

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

In order to use NVHMeasurement and NVHEnvironment, users must import ASAM.ODS.NVH;

using ASAM.ODS.NVH;

Here are the NVHMeasurement Class properties:

Name Type

Altitude double

GPSEnabled bool

Latitude double

Longitude double

Page 29 of 139

Here are the NVHEnvironment Class properties:

Here are the AoEnvironment Class methods:

C# Code
The code snippet below shows the extraction of GPS related data.

using System;
using System.Collections.Generic;
using System.IO;
using System.Text;
using System.Reflection;
using System.Diagnostics;
// DLL file imports
using EDM.RecordingInterface;
using EDM.Recording;
using ASAM.ODS.NVH;
using Common;
using Common.Spider;
using EDM.Utils;

// Set the recording file path and open it to extract a IRecording object
var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

if (rec is ODSNVHATFXMLRecording nvhRec)
{
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

MeasurementBegin DateTime

MeasurementEnd DateTime

NanoSecondElapsed int

Name Type

FirmwareVersion string

InstruSoftwareVersion string

HardwareVersion string

BitwareVersion string

TimeZone string

Name Return Type Descriptions

GetLocalTime(DateTime) DateTime Get time in local format

GetUTCTime(DateTime) DateTime Get time in UTC format

Page 30 of 139

 NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

 bool bGPS = nvhMeasurement.GPSEnabled;
 double lng;
 double lat;
 double alt;
 double nano;
 string timeZone;
 string softwareVer;
 string hardwareVer;
 string firmwareVer;
 string bitVer;

 if (bGPS)
 {
 lng = nvhMeasurement.Longitude;
 lat = nvhMeasurement.Latitude;
 alt = nvhMeasurement.Altitude;
 nano = nvhMeasurement.NanoSecondElapsed;
 }

 if (!String.IsNullOrEmpty(nvhEnvironment.TimeZone))
 {
 timeZone = nvhEnvironment.TimeZone;
 }

 DateTime creaTimeLocal = nvhRec.RecordingProperty.CreateTime;
 DateTime creaTimeUTC = Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null);

 if (!String.IsNullOrEmpty(nvhEnvironment.InstruSoftwareVersion))
 {
 softwareVer = nvhEnvironment.InstruSoftwareVersion;
 hardwareVer = nvhEnvironment.HardwareVersion;
 firmwareVer = nvhEnvironment.FirmwareVersion;
 bitVer = nvhEnvironment.BitVersion;
 }
}

Page 31 of 139

Python Code
#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Linq')
clr.AddReference('System.Collections')

#---C# .NET imports & dll imports
from EDM.Recording import *
from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *
from EDM.Utils import *
from Common import *
from Common import _SpectrumScalingType
from Common.Spider import *
from System import *
from System.Diagnostics import *
from System.Reflection import *
from System.Text import *
from System.IO import *

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording
recordingPathRegular = recordingPath + "SIG0000.atfx"

#OpenRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string

Page 32 of 139

dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathRegular,
None)

Create ODS NVH ATFXML Recording object that contains NVH Measurement & NVH
Environment using the file path
recording = ODSNVHATFXMLRecording(recordingPathRegular)

If the above created object is ODSNVHATFXMLRecording, it should be able to get the
NVH Measurement & NVH Environment and assigned them
if type(recording) is ODSNVHATFXMLRecording:
 nvhRec = recording
 nvhMeasurement = nvhRec.Measurement
 nvhEnvironment = nvhRec.Environment
 bGPS = nvhMeasurement.GPSEnabled
 if bGPS:
 print("GPS Enabled: ", bGPS)
 print("Longitude: ", nvhMeasurement.Longitude)
 print("Latitude: ", nvhMeasurement.Latitude)
 print("Altitude: ", nvhMeasurement.Altitude)
 print("Nanoseconds Elapsed: ", nvhMeasurement.NanoSecondElapsed)

 if not String.IsNullOrEmpty(nvhEnvironment.TimeZoneString):
 print("Time Zone: ", nvhEnvironment.TimeZoneString)

 print("Created Time (Local): ", nvhRec.RecordingProperty.CreateTime)
 print("Created Time (UTC): ", Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime,
None))
 dateTimeNano = DateTimeNano(nvhRec.RecordingProperty.CreateTime,
UInt32(nvhMeasurement.NanoSecondElapsed))
 print("DateTimeNano Object: ", dateTimeNano)

Matlab Code
% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

% Create a atfx recording instance
rec = EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Downloads\gps test
example\{4499520}_REC_{20220419}(1).atfx');

% Display gps properties
disp(System.String.Format("GPS Enable:{0}",rec.Measurement.GPSEnabled));
disp(System.String.Format("Longitude:{0}",rec.Measurement.Longitude));
disp(System.String.Format("Latitude:{0}",rec.Measurement.Latitude));

Page 33 of 139

disp(System.String.Format("Altitude:{0}",rec.Measurement.Altitude));
disp(System.String.Format("Time zone:{0}",rec.Environment.TimeZoneString));
disp(System.String.Format("Created Time
(Local):{0}",rec.RecordingProperty.CreateTime));
disp(System.String.Format("Created Time (UTC):{0}",
Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, [])));
disp(System.String.Format("Nanoseconds
Elapsed:{0}",rec.Measurement.NanoSecondElapsed));

Page 34 of 139

ATFX API C# Code Examples

The following sections are examples from our CI ATFX Reader C# Demo Program to help users

understand how to utilize our API class methods. Some of the code snippets have been shortened

compared to the actual Demo Program to provide a more concise explanation. These code

samples can be used to quickstart custom software integration with the ATFX API.

There are 3 file types that the ATFX API can open: .atfx, .ts and .gps. The .atfx is the header file

that references .dat, which contains all of the signal frame data and other data not referenced in

the .atfx file. It can also reference .ts and .gps files. The .dat file is an important part of the ATFX

file and if it is missing the ATFX API may not be able to properly read the ATFX file.

There may be a chance that the data displayed in the ATFX API is different from what is

displayed on EDM. This is due to the spectrum type being a display parameter and not saved in

the ATFX file, thus it will default to EUrms2.

The demo should load the initial saved engineering units when reading any of the signal frame

data.

Building the C# Demo
When opening the C# demo csproj file in Visual Studio, there may be issues that come up such

as missing component reference warnings or an error about a missing package file.

First, open the csproj file in notepad, locate the target block code and remove it. It should be near

the bottom of the file.

<Target Name="EnsureNuGetPackageBuildImports" BeforeTargets="PrepareForBuild">

 <PropertyGroup>

 <ErrorText>This project references NuGet package(s) that are missing on this computer.

Use NuGet Package Restore to download them. For more information, see

http://go.microsoft.com/fwlink/?LinkID=322105. The missing file is {0}.</ErrorText>

Page 35 of 139

 </PropertyGroup>

 <Error Condition="!Exists('..\..\..\packages\Fody.2.0.0\build\netstandard1.4\Fody.targets')"

Text="$([System.String]::Format('$(ErrorText)',

'..\..\..\packages\Fody.2.0.0\build\netstandard1.4\Fody.targets'))" />

 <Error

Condition="!Exists('..\..\..\packages\Costura.Fody.1.6.2\build\dotnet\Costura.Fody.targets')"

Text="$([System.String]::Format('$(ErrorText)',

'..\..\..\packages\Costura.Fody.1.6.2\build\dotnet\Costura.Fody.targets'))" />

</Target>

Save the file and reload the visual studio when the prompt comes up.

The system related components should be fixed:

Save the solution file where the csproj file is located then right click the solution or project file in

Visual Studio Solution Explorer -> Manage Nuget Packages.

Page 36 of 139

Uninstall the Costura.Fody v1.6.2 and Fody v2.0.0 packages and reinstall in them to fix the

Costura component reference. Overwrite if necessary.

These packages are used to embed the CI.ATFX.Reader.dll and Common.dll files to the exe file

during build.

Then for the final components, remove them and reference the CI.ATFX.Reader.dll and

Common.dll files in the ATFX API Package bin folder.

After doing all that, the project can now be built.

Page 37 of 139

Importing and Referencing C# DLL Files
The C# Demo code has a Visual Studio project that can be opened to see how the C# DLL files

are referenced in the project. The C# DLL files can be directly referenced into the project by

right clicking References -> Add References -> Browse in Reference Manager window ->

Locating the DLL files in ATFX API Package\bin folder.

After the C# DLL files have been referenced in the C# Demo, the ATFX API namespace can be

imported to use the various classes and properties.

Page 38 of 139

Below are several imports from the ATFX API that are used in the C# Demo code:

using EDM.RecordingInterface;
using EDM.Recording;
using ASAM.ODS.NVH;
using Common;
using Common.Spider;
using EDM.Utils;

The C# Demo project also comes with the Fody/Costura package that embeds any referenced dll

files into the buildable exe file.

Opening a ATFX File – Start Here
To open an ATFX file, use the RecordingManager Class to call OpenRecording, which takes

in a filename and outputs a IRecording object:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

What is a Recording vs. Signal?
In our API, the IRecording object represents the ATFX file, and contains a list of ISignal

objects. Each ISignal corresponds to a given channel and measurement method.

Concept Class Type Example

ATFX file record <IRecording> “C:\Sig001.atfx”

- Properties

<RecordingProperty>

- Signals List<ISignal>

o Signals[0] <ISignal> Block(Ch1)

o Signals[1] <ISignal> Block(Ch2)

o Signals[2] <ISignal> APS(Ch1)

o Signals[3] <ISignal> APS(Ch2)

o …

For instance, in the example above, the first Signal stored in the ATFX file corresponds to a

segment of Time Domain data acquired from Channel 1.

Note: in CI terminology, “Block” refers to a contiguous segment of time domain data (usually

collected with sample size that is a power of 2), and “APS” refers to a contiguous segment of

Page 39 of 139

frequency domain data (usually calculated via FFT of a time block). These are the two most

common types of signals in our software.

The example code below shows using the IRecording.Signals property to get a list of signals

from a given ATFX record:

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

In addition, the IRecording object also supports the following properties:

Finding the Signal for a particular channel
Once you have a list of signals, you will want to query the ISignal.Name of the signal to find the

channel and measurement type you are looking for.

For instance, if you want the time block for channel 4, then you want to look for the signal with

the name “Block(Ch4)”

RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)').First();

What is a Frame?
A Frame is a double[][] array inside the ISignal object, that contains the numerical data (x-

values, y-values) that you want to acquire. Most of the time, a Signal only has one Frame, but in

the case of waterfall plots or 3D plots, there may be multiple frames.

Concept Class Type Example

Name Type Descriptions

Item ISignal Returns the ISignal object at a specified

index

RecordingProperty RecordingProperty Returns a RecordingProperty object with

metadata (ex: CreateTime, Serial Numbers,

etc.)

SignalCount int Returns number of ISignal objects

Signals List<ISignal> This is where the actual data lives. Returns a

list of ISignal objects

Page 40 of 139

Signal <ISignal> Block(Ch1)

- Frame

<double[][]> Signal.GetFrame(0)

o Frame[0] <double[]> Array of x-values

o Frame[1] <double[]> Array of y-values

o Frame[2] <double[]> Array of z-values

(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,

and (if applicable) the third array is the z-values.

The Frame size (int) is stored in the ISignal.FrameSize property. The full list of ISignal

properties and methods is shown below:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Unknown 0

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

Page 41 of 139

An end-to-end code example
To summarize the above content, here is an example code that opens a recording, finds the signal

for the “Channel 4” time domain data, and reads out the frame data:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)').First();

// Get the frame, which is formatted like [[x1, x2, x3…], [y1, y2, y3…],…]
double[][] frame = signalCh4.GetFrame(0);
double[] xValues = frame[0];
double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Additional File Components - .TS and .GPS
An ATFX file may also come with a .ts and / or .gps where it lists the files as a file component

inside the ATFX file.

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetFrame(int,

_SpectrumScalingType,

string)

Double[][] Returns a double[][] with the data

frame at that index. There are two

additional parameters that can convert

the returned data based on the

spectrum type and the engineering

unit.

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 42 of 139

In order to extract the data from these types of files users will need to import EDM.Utils, which

will allow access to Utilty class that offers various getter methods that return properties or lists

of data from the ATFX file.

using EDM.Utils;

The Utility method to use to get external file components and return them as IRecording objects

in a list is GetListOfAllRecordings(IRecording). This method will at least return a list

containing one IRecording object that is the main recording of the ATFX file and contains the

bulk of the data.

private void ShowRecordings(IRecording rec)
{

List<IRecording> recordingList = Utility.GetListOfAllRecordings(rec);
}

With a newly created recording of a .ts and / or .gps file, users can access their specific recording

properties and signals from the IRecording properties. These signals also contain their own set of

data and properties that can be stored in a list to keep track of.

The Utility method to use is GetListOfAllSignals(IRecording) that will return all the signals

inside the passed in recording in a list. And if that recording contains .ts and \ or .gps file, it will

also add their signals to the returned list.

private void ShowSignals(IRecording rec)
{

List<ISignal> recordingList = Utility.GetListOfAllSignals(rec);
}

Opening a Time Stamp Signal (TS) or GPS Location File
It is possible to open a .ts and .gps file, given that the RecordingManager OpenRecording will

create a specific type of recording.

Page 43 of 139

Thus all that is needed to do is find the file path of the .ts or .gps and send it to the

RecordingManager.Manager.OpenRecording. Without having to access the ATFX external file

components.

RecordingManager.Manager.OpenRecording(string filePath, out IRecording recording);

var recordingPath = “C:\Sig001.ts”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 // Grab data from IRecording
}
var recordingPath = “C:\Sig001.gps”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 // Grab data from IRecording
}

Reading the Record Properties
To read the Record Properties, which contains the ATFX file record information, it is extracted

directly from the IRecording.RecordingProperty using the Utilty GetListOfProperties

method, which will return a 2D list of strings. Each list contains the property name and property

value.

Or by calling the following properties in the IRecording.RecordingProperty.

Here are the RecordingProperty Class properties:

Name Type Descriptions

CreateTime DateTime When the file was recorded. It is not

when the file is saved. This parameter

can show the time accuracy as high as

second. To obtain the starting

recording time with better accuracy,

please add “StartNanosecond” in

integer that represents the additional

nanoseconds elapsed.

Instruments string The product name used to record/save

data to the file.

MasterSN int Serial number of the master module of

the system when the file was created

MeasurementType MeasurementConfigType Measurement type of the file

RecordingName string Name of the recording file

DeviceSNs string Serial numbers of the 1 or many

modules used in the recording

RecordingPath string Recording file save path

Page 44 of 139

Calling Individual Recording Property
DateTime createTime = [IRecording object].RecordingProperty.CreateTime;

string instrument = [IRecording object].RecordingProperty.Instruments;

uint masterSN = [IRecording object].RecordingProperty.MasterSN;

etc.

GetListOfProperties
The Utility GetListOfProperties method is useful in getting a list of various data types in the

RecordingProperty class. It returns a 2D list of strings with the property name and property value

for each list.

Utility.GetListOfProperties(object item);

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 foreach(List<string> property in Utility.GetListOfProperties(rec.RecordingProperty))
 {
 dataGridRecord.Rows.Add(property[0], property[1]);
 }
}

RecordingType RecordingType The type of recording based on its file

extension

RecordingTypeName string Recording type name based on its file

extension

SavingVersion Version EDM version number when the file

was created.

TestNote string Test notes given by the user before the

test ran

User string The EDM account name when the file

was created.

Page 45 of 139

Reading the GPS Data
To read the GPS data, it is extracted from the IRecording object as a

ODSNVHATFXMLRecording object and locating the Measurement and Environment

property. These properties are AoMeasurement and AoEnvironment, which can be converted

into NVHMeasurement and NVHEnvironment.

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;

In order to use NVHMeasurement and NVHEnvironment, users must import ASAM.ODS.NVH;

using ASAM.ODS.NVH;

Here are the NVHMeasurement Class properties:

Here are the NVHEnvironment Class properties:

Name Type

Altitude double

GPSEnabled bool

Latitude double

Longitude double

MeasurementBegin DateTime

MeasurementEnd DateTime

NanoSecondElapsed int

Page 46 of 139

Here are the AoEnvironment Class methods:

The code snippet below shows the extraction of GPS related data.

private void ShowGPSInfo(IRecording rec)
{
 if (rec is ODSNVHATFXMLRecording nvhRec)
 {
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;
 NVHEnvironment nvhEnvironment = nvhRec.Environment as NVHEnvironment;
 bool bGPS = nvhMeasurement.GPSEnabled;

 if (bGPS)
 {
 dgvRecInfo.Rows.Add("GPS Enabled", bGPS);
 double lng = nvhMeasurement.Longitude;
 double lat = nvhMeasurement.Latitude;
 double alt = nvhMeasurement.Altitude;
 double nano = nvhMeasurement.NanoSecondElapsed;

 dgvRecInfo.Rows.Add("Longitude", lng);
 dgvRecInfo.Rows.Add("Latitude", lat);
 dgvRecInfo.Rows.Add("Altitude", alt);
 dgvRecInfo.Rows.Add("Nanoseconds Elapsed", nano);
 }

 if (!String.IsNullOrEmpty(nvhEnvironment.TimeZoneString))
 {
 dgvRecInfo.Rows.Add("Time Zone", nvhEnvironment.TimeZoneString);
 }

 dgvRecInfo.Rows.Add("Created Time (Local)", nvhRec.RecordingProperty.CreateTime);
 dgvRecInfo.Rows.Add("Created Time (UTC)",
Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null));

 if (!String.IsNullOrEmpty(nvhEnvironment.InstruSoftwareVersion))
 {

Name Type

FirmwareVersion string

InstruSoftwareVersion string

HardwareVersion string

BitwareVersion string

TimeZone string

Name Return Type Descriptions

GetLocalTime(DateTime) DateTime Get time in local format

GetUTCTime(DateTime) DateTime Get time in UTC format

Page 47 of 139

 dgvRecInfo.Rows.Add("Instrument Software Version",
nvhEnvironment.InstruSoftwareVersion);
 dgvRecInfo.Rows.Add("Hardware Version", nvhEnvironment.HardwareVersion);
 dgvRecInfo.Rows.Add("Firmware Version", nvhEnvironment.FirmwareVersion);
 dgvRecInfo.Rows.Add("Bit Version", nvhEnvironment.BitVersion);
 }
 }
}

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowGPSInfo(rec);
}

Extracting the Date and Time of a Recording
To extract and read the time data that a recording has, users will have to import and use the

DateTimeNano object, which is an extension of the DateTime that includes nanosecond data.

To use the DateTimeNano class, users will need to import Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are referenced in the link below:

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Name Type Descriptions

https://docs.microsoft.com/en-us/dotnet/api/system.datetime?view=net-6.0#fields

Page 48 of 139

The following code snippet shows how to extract, create and display the DateTimeNano object

properties.

private void ShowDateTimeNano(IRecording rec, bool isLocal)
{
 if (rec is ODSNVHATFXMLRecording nvhRec)
 {
 NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;
 DateTimeNano createTimeUTC;
 if (isLocal)
 {
 createTimeUTC = new DateTimeNano(nvhRec.RecordingProperty.CreateTime,
nvhMeasurement.NanoSecondElapsed);
 }
 else
 {
 createTimeUTC = new
DateTimeNano(Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, null),
 nvhMeasurement.NanoSecondElapsed);
 }
 dgvRecInfo.Rows.Add("Year", createTimeUTC.Year);
 dgvRecInfo.Rows.Add("Month", createTimeUTC.Month);
 dgvRecInfo.Rows.Add("Day", createTimeUTC.Day);
 dgvRecInfo.Rows.Add("Hour", createTimeUTC.Hour);
 dgvRecInfo.Rows.Add("Minute", createTimeUTC.Minute);
 dgvRecInfo.Rows.Add("Second", createTimeUTC.Second);
 dgvRecInfo.Rows.Add("Millisecond", createTimeUTC.Millisecond);
 dgvRecInfo.Rows.Add("IsNanoTime", createTimeUTC.IsNanoTime);
 dgvRecInfo.Rows.Add("NanoSeconds", createTimeUTC.ms_us_ns);
 dgvRecInfo.Rows.Add("TotalNanosec", createTimeUTC.TotalNanoSeconds);
 dgvRecInfo.Rows.Add("Date Time", createTimeUTC.DateTime);
 dgvRecInfo.Rows.Add("TimeOfDay", createTimeUTC.TimeOfDay);
 dgvRecInfo.Rows.Add("ToNanoString()", createTimeUTC.ToNanoString());

 int ms = (int)(createTimeUTC.ms_us_ns / 1e6);
 int us = (int)(createTimeUTC.ms_us_ns / 1e3 % 1e3);
 int ns = (int)(createTimeUTC.ms_us_ns % 1e3);
 string customFormat = string.Format("{0}/{1}/{2}/{3}/{4}/{5}/{6}/{7}/{8}",
createTimeUTC.Year, createTimeUTC.Month, createTimeUTC.Day, createTimeUTC.Hour,
createTimeUTC.Minute, createTimeUTC.Second, ms, us, ns);
 dgvRecInfo.Rows.Add("Custom Format: yyyy/mm/dd/hh/mm/ss/ms/us/ns", customFormat);
 }
}

IsNanoTime DateTime Gets whether nanoseconds exists / not

equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time

and nanosecond time

Milisecond.Microsecond.Nanosecond

000/000/000

Page 49 of 139

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 ShowDateTimeNano(rec, false);
}

Reading the Input Channel Table Data
The Input Channel Table is a list of channels based on how many inputs of the test’s recording

instrument system, such as a Spider 80X 8 Channels. These channels, attached with sensors,

measured physical quantities to voltages by the front-end hardware then read into physical units

by the EDM software.

Below is a list of data columns that the input channel has for each channel:

Data Column Name Description

On/Off Enables or disables the channel.

Location ID Assigns a custom label used to identify the source in the signal display

and other setup windows.

Measurement

Quantity

Defines the physical unit that will be measured by the sensor

connected to the channel.

Sensitivity Sets the proportionality factor for the measurement (millivolts per

engineering unit) given as a parameter of the sensor.

Input Mode The electrical interface mode of the sensor.

DC-Differential - Neither of the input connections is referenced to the

local ground. The input is taken as the potential difference between

the two input terminals, and any potential in common with both

terminals is canceled out.

Page 50 of 139

DC-Single End - One of the input terminals is grounded and the input

is taken as the potential difference of the center terminal with respect

to this ground. Use this mode when the input needs to be grounded to

reduce EMI noise or static buildup.

AC-Differential - A differential input mode that applies a low-

frequency high-pass (DC-blocking) analog filter to the input. It rejects

common mode signals and DC components in the input signal.

AC-Single End - Grounds one of the input terminals and enables the

DC-blocking analog filter.

Integral Electronic PiezoElectric (IEPE (ICP)) - A class of

transducers that are packaged with built-in voltage amplifiers powered

by a constant current.

Charge - For high-sensitivity piezoelectric units that lack a built-in

voltage mode amplifier (i.e. IEPE), allowing them to be used in high-

temperature environments.

Input Range The voltage range of the Input Mode.

Sensor Defines the sensor setting applied to an input channel.

Max Sensor Range Defines the maximum input voltage allowed.

Integration Allows having No Integration, Integration, or Double Integration

applied.

High-Pass Filter Fc

(Hz)

Sets the digital high-pass filter frequency, used to block spurious low

frequency and DC signals. To measure very low frequency or DC

signals set this value to zero and use the DC-SE or the DC-DI input

mode.

Channel Type The type of channel, whether it is a Control or Monitor channel.

Measurement Point The measure point that the input channel is connected to.

DOFs The degree of freedom of the channel that is the combination of

entered Measurement Point and Coordinate.

Control Weighting Used when more than one control channel is present for weighted

averaging. See the description for the Control Strategy test parameter.

The weighting factors are automatically normalized. For example,

enter weighting factor 2.0 for channel 1, 1.0 for channel will be the

same as entering factor 4.0 for channel 1 and 2.0 for channel 2.

Description Used to add users’ notes.

Coordinate Specifies the measurement position and direction of the sensor.

Time Weighting Defines the time weighting for exponential averaging. (Only available

in acoustic test)

Page 51 of 139

Reading the Input Channel Data Through Utility Class
To read the Input Channel Table data stored in the ATFX file, it is extracted from the IRecording

object using the Utility GetChannelTable method, which will return a 2D list of strings. Each

list contains one row of channel data.

Utility.GetChannelTable(IRecording);

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 if(rec == null)
 return;

 foreach (List<string> channel in Utility.GetChannelTable(rec))
 {
 dgvChannel.Rows.Add(channel.ToArray());

}
}

Calling Individual Properties of Input Channel
It is possible to directly call input channel data from an IRecording object, although it is

recommended to use the Utility GetChannelTable method. To get the necessary input channel

object, the IRecording must be converted to a ODSNVHATFXMLRecording object to locate

the ChnSensitivitys property. This property can also be converted into a

NVHTestEquipmentPart.

ODSNVHATFXMLRecording odsRec = rec as ODSNVHATFXMLRecording;

ChannelSensitivity eq in odsRec.ChnSensitivities[0];

NVHTestEquipmentPart channel = eq.EquipmentPart;

The ODSNVHATFXMLRecording and ChannelSensitivity class already comes with the

importation of EDM.Recording and EDM.RecordingInterface.

However, there are also additional imports, such as the ASAM.ODS.NVH, that will be used in

this section.

using ASAM.ODS.NVH;

Below shows a way of extracting data directly from the NVHTestEquipmentPart object.

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{

Page 52 of 139

 ODSNVHATFXMLRecording odsRec = rec as ODSNVHATFXMLRecording;

foreach (ChannelSensitivity eq in odsRec.ChnSensitivitys)
 {
 NVHTestEquipmentPart channel = eq.EquipmentPart;

 if (channel == null) continue;

 dataGridChannel.Rows.Add(channel.LabelTitle,
 channel.ChannelType.ToChannelTypeString(),
 channel.QuantityName,
 channel.EUName,
 $"{channel.Sensitivity}(mv/{channel.EUName})",
 channel.ChannelStatus.ToChannelStatusString(),
 channel.InputRange.ToChannelRangeString(),
 channel.SensorSN,
 channel.SensorRange,
 channel.Intergration.ToChannelIntegrationString(),
 channel.Weighting);
 }
}

Reading the Signal Properties
To read the Signal Properties, which contains the ATFX file signal property information, it is

extracted directly from the ISignal.Properties using Utilty GetListOfProperties method, which

will return a 2D list of strings. Each list contains the property name and property value.

The ISignal interface already comes with the importation of EDM.RecordingInterface.

Here are the ISignal Class properties:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Unknown 0

Page 53 of 139

Using a List to Store and Recall Signals
When working with the Signals list from IRecording object, it would be best to store it in a list to

easily reference to it, especially when selecting which signal properties or data to display. This

can be done by the Utility GetListOfAllSignals that returns a list of ISignal from the ATFX file.

Utility.GetListOfAllSignals(IRecording);

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 lbSignalDataInfo.Items.AddRange(Utility.GetListOfAllSignals(rec).ToArray());
}

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetFrame(int,

_SpectrumScalingType,

string)

Double[][] Returns a double[][] with the data

frame at that index. There are two

additional parameters that can convert

the returned data based on the

spectrum type and the engineering

unit.

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 54 of 139

Basic Signal Information
Here are the SignalProperties Class properties:

Name Type Descriptions

BlockSize int Get the block size Number of time

data points captured in the signal

DeviceSN string The recording instrument serial

numbers

Duration string Get the signal duration Amount of

time covered by the signal

GeneratedTime DateTimeNano Get the signal generated time from

instrument

Instruments string Get the instrument

MeasurementType MesaurementConfigType Get the MeasurementType

RecordingProperties RecordingProperty Get the RecordingProperties

SamplingRate string Get the sampling rate Number of data

samples acquired per second

SignalName string Get the signal name

SignalType SignalType Get the signal type

Unknown 0

Time 1

Frequency 2

Trend 3

SoftwareVersion version Get the software version

UnitX string Get the X unit

UnitY string Get the Y unit

UnitZ string Get the Z unit

Page 55 of 139

Calling individual property
ISignal signal = [IRecording object].Signals[0];

Common.DateTimeNano dateTimeNano = signal.Properties.GeneratedTime;

MeasurementConfigType measureType = signal.Properties.MeasurementType;

SignalType type = signal.Properties.SignalType;

etc.

GetListOfProperties

The Utility GetListOfProperties method is useful in getting a list of various data types in the

SignalProperties class. It returns a 2D list of strings with the property name and property value

for each list.

The following code snippets display the signal information.

Utility.GetListOfProperties(object item);

private void BtnSignalBasicInfo_Click(object sender, EventArgs e)
{
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 foreach(List<string> property in Utility.GetListOfProperties(signal.Properties))
 {
 dgvSignalDataInfo.Rows.Add(property[0], property[1]);
 }
 }
}

Advance Signal Information
Here are the DSASignalProperty Class fields:

Name Type Descriptions

Page 56 of 139

And here are the VCSSignalProperty Class fields:

averageMode int average mode index when signal data

saved

averageNumber int average number when signal data

saved

blocksizeLine string block size line when signal data saved

elapsedTime double elapsed time when signal data saved

frequencyIndex int sample rate index when signal data

saved

outputPeak double output peak when signal data saved

overlapRatioIndex int overlap ratio index when signal data

saved

rpmTacho1 double rpm tacho 1 when signal data saved

rpmTacho2 double rpm tacho 2 when signal data saved

testLastSavedTime DateTime last saved time of the test

testName string test name

totalFrameNumber int total frame number(or current average

number) when signal data saved

windowTypeIndex int window type index when signal data

saved

Name Type Descriptions

controlPeak double control peak (m/s2) when data saved

controlRMS double current control RMS (m/s2) when data

saved

currentFrequency double current frequency when data saved

(Sine)

curRepeat int current repeat times when data saved

displacementPkPk double displacement peak peak (m) when data

saved

drivePK double current drive peak (voltage) when data

saved

fullLevelElapsed double full level elapsed when data saved

(time in Random/Sine/TDR, pulses in

Shock system)

Page 57 of 139

Calling individual field
ISignal signal = [IRecording object].Signals[0];

int avgMode = signal.Properties.dsaProperties.averageMode;

string name = signal.Properties.dsaProperties.testName;

double level = signal.Properties.vcsProperties.level;

double remaining = signal.Properties.vcsProperties.remaining;

string name = signal.Properties.vcsProperties.testName;

etc.

GetListOfProperties

level double current VCS level when data saved

nextDrivePK double next predicted drive peak (voltage)

nextLevel double next predicted VCS level

pulseWidth double main pulse width in classic Shock

remaining double remaining time when data saved (time

in Random/Sine/TDR, pulses in Shock

system)

remainingCycle double remaining cycles when data saved

(Sine)

sweepNumber int sweep number when data saved (Sine)

sweepRate double sweep rate when data saved (Sine)

sweepType int sweep type when data saved (Sine)

targetPeak double target peak (m/s2) when data saved

targetRMS double target RMS (m/s2) when data saved

testLastRunTime DateTime last run time of the test

testLastSavedTime DateTime last saved time of the test

testName string test name

totalCycle double total cycles when data saved (Sine)

totalElapsed double total elapsed time when data saved

(time in Random/Sine/TDR, pulses in

Shock system)

totalRepeat int total repeat times when data saved

velocityPk double velocity peak (m/s) when data saved

Page 58 of 139

Here is a code snippet for displaying the advance signal information, depending on if the signal

comes from VCS or DSA.

For the showPublicField, it can be set to false to show the basic signal information or to true to

show the advance signal information.

Utility.GetListOfProperties(object item, bool showPublicField);

private void ShowContents(DataGridView grid, object item, bool showPublicField = false)
{
 grid.Rows.Clear();

 foreach(List<string> property in Utility.GetListOfProperties(item, showPublicField))
 {
 grid.Rows.Add(property[0], property[1]);
 }
}

private void BtnSignalAdvInfo_Click(object sender, EventArgs e)
{
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 //if signal is a dsa signal, dsa properties should not be empty
 if (signal.Properties.dsaProperties != null)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties.dsaProperties, true);
 }
 //if signal is a vcs signal, vcs properties should not be empty
 if (signal.Properties.vcsProperties != null)
 {
 ShowContents(dgvSignalDataInfo, signal.Properties.vcsProperties, true);
 }
 }
}

Page 59 of 139

Advance Generated Time
The Generated Time property for Signal is a DateTimeNano object, which is imported from

Common.

using Common;

Here are the DateTimeNano Class properties, it shares similarities to DateTime, of which those

are omitted:

Calling individual property
ISignal signal = [IRecording object].Signals[0];

uint ms_us_ns = signal.Properties.GeneratedTime.ms_us_ns;

Name Type Descriptions

IsNanoTime DateTime Gets whether nanoseconds exists / not

equal to zero

TotalNanoSeconds int Get TotalSeconds in Nano Seconds

ms_us_ns int We use this NanoSeconds==0

Distinguish between normal time

and nanosecond time

Milisecond.Microsecond.Nanosecond

000/000/000

Page 60 of 139

ulong totalNanoSec = signal.Properties.GeneratedTime.TotalNanoSeconds;

int seconds = signal.Properties.GeneratedTime.Second;

etc.

GetListOfProperties

The Utility GetListOfProperties method is useful in getting a list of various data types in the

DateTimeNano class.

Utility.GetListOfProperties(object item);

DateTimeNano generatedTime = [ISignal object].Properties.GeneratedTime;
private void BtnShowGeneratedTime_Click(object sender, EventArgs e)
{
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 foreach(List<string> property in
Utility.GetListOfProperties(signal.Properties.GeneratedTime))
 {
 dgvSignalDataInfo.Rows.Add(property[0], property[1]);
 }
 }
}

Reading the Data Values of a Signal Frame
A signal frame is a snapshot of measurement data that consists of X, Y and sometimes Z data.

Each of these frames consists of an array with the size according to Signal.FrameSize property.

Each signal usually has 1 Frame (unless it is a waterfall or 3D plot), and the Signal.FrameCount

property describes how many frames are in the signal.

The X and Y formulate points in a chart where X can be Time or Frequency and Y can be a

variety of engineering units, such as Voltage, Acceleration, Velocity, Displacement, Force, etc.

And the Z is generally the time since the device start measuring.

Thus, if a user were to graph the the X and Y data, they would get a plot graph like below.

Page 61 of 139

A Frame object is stored inside a parent Signal object according to the following structure:

Concept Class Type Example

Signal <ISignal> Block(Ch1)

- Frame

<double[][]> Signal.GetFrame(0)

o Frame[0] <double[]> Array of x-values

o Frame[1] <double[]> Array of y-values

o Frame[2] <double[]> Array of z-values

(if applicable)

The Frame is formatted such that the first array is the x-values, the second array is the y-values,

and (if applicable) the third array is the z-values.

More information about the Frame (e.g., Frame Size) can be queried from the ISignal parent

object. The ISignal parent object for the Frame also supports the following additional

properties:

Name Type Descriptions

Dimension int Get the signal dimension

FrameSize int Get the size of each frame

Name string Get the signal name

Properties SignalProperties Get the signal properties. Time domain

and frequency domain signals have

different signal properties. For time

domain signals, Properties refer to

SignalProperties. For frequency

Page 62 of 139

An end-to-end example of reading a Frame from a Signal, which can be read from a Recording:

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

domain signals, Properties refer to

FrequencyDomainSignalProperties.

Recording IRecording Get the signal recording

Type SignalType Get the signal type, time/frequency

domain

Unknown 0

Time 1

Frequency 2

Trend 3

Name Return Type Descriptions

GetFrame(int) Double[][] Returns a double[][] with the data

frame at that index

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetFrame(int,

_SpectrumScalingType,

string)

Double[][] Returns a double[][] with the data

frame at that index. There are two

additional parameters that can convert

the returned data based on the

spectrum type and the engineering

unit.

A snapshot of measurement data

consisting of X, Y and sometimes Z

values.

GetParameter<T>(string) T Get the specified parameter by the

given name.

GetParameterType(string) string Get the specified parameter data type

by the given name.

Page 63 of 139

// To get the Channel 4 signal, select the signal whose name is ‘Block(Ch4)’
ISignal signalCh4 = signals.Where(sig => sig.Name == 'Block(Ch4)').First();

// Get the frame, which is formatted like [[x1, x2, x3…], [y1, y2, y3…],…]
double[][] frame = signalCh4.GetFrame(0);
double[] xValues = frame[0];
double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

// Size of the frame
int size = signalCh4.FrameSize;

Reading Frequency Signal Frame Data
The ATFX API can read the frequency signal frame data in other spectrum types and

engineering units. Spectrum Type defines the units for spectrum signals as power spectral

density (EU2/Hz), energy spectral density (EU2s/Hz), squared units (EUrms
2), peak units (EUpeak),

or RMS (EUrms).

The engineering units from EDM global settings should be saved in the ATFX file, however, the

spectrum type is not. The default for the spectrum type is (EUrms)^2. Thus, if the data read by

the ATFX API is different then what is in EDM, try passing in different engineering units and

spectrum types.

Frequency Response Function (FRF) related signals, such as FRF, H, Cross Power Spectrum

(CPS) and Fast Fourier Transform Spectral Analysis linear (FFT) spectrum are read in Real &

Page 64 of 139

Imaginary. These signals also pair the Real & Imaginary numbers in the Y data, thus X data

frame size may be 512 and the Y data frame size is 1024.

The ISignal class comes with a GetFrame(int index, _SpectrumScalingType spectrum, string

engineeringUnit) that users can use to convert the returned frame data. And for reading the Y

labels for the FRF related signals, the ISignal class has GetYLabel, which returns a list of

strings. And depending on the signal, the first string in the list will be enough for the Y data

label, but if it’s a FRF related signal, the second string in the list will act as the imaginary type Y

data label.

Note that spectrum types only apply to Power Spectrum and Linear Spectrum signals and do not

apply to transfer functions, phase functions or coherence functions. Whereas the engineering

units should change every signal. There are also spectrum signals that only has a select amount

of spectrum types, such as Sine spectrum with EUrms, EUPeak and EUPeak-Peak or Octave

spectrum with EUrms2 and EUrms.

ISignal.GetFrame(int, _SpectrumScalingType, string);

ISignal.GetYLabel();

using EDM.RecordingInterface;
using EDM.Recording;

var recordingPath = “C:\Sig001.atfx”;
RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec);

// Get the list of signals from the recording
List<ISignal> signals = rec.Signals;

// To get the Channel 1 signal, select the signal whose name is ‘APS(Ch1)’
ISignal signalCh1 = signals.Where(sig => sig.Name == ‘APS(Ch1)').First();

// Get the frame, which is formatted like [[x1, x2, x3…], [y1, y2, y3…],…]
double[][] frame = signalCh1.GetFrame(0, _SpectrumScalingType.EUPeak,
AccelerationUnitEnumString.ArrayString[AccelerationUnitType.g]);
double[] xValues = frame[0];
double[] yValues = frame[1];

// If applicable
double[] zValues = frame[2];

string signalCh1YLabel = signalCh1.GetYLabel()[0];

// If statement for obtaining the 2nd Y data label if the signal is related to FRF
// Also applies to Cross power spectrum and FFT
if (signal.Properties.NvhType == _NVHType.FrequencyResponseSpectrum)
{
 string signalCh1_2ndYLabel = signalCh1.GetYLabel()[1];
}

Page 65 of 139

Page 66 of 139

Getting Spectrum Types or Engineering Units
Each signal is a specific type that has its own spectrum type and engineering unit (EU) that can

convert the frame data when passing it through the GetFrame method.

For example:

APS signal in Acceleration

Spectrum Type: EUrms2, EUrms, EUPeak, EUPeak-Peak, EU2/Hz, EU2s/Hz, sqrt(EU2/Hz),

sqrt(EU2s/Hz)

Acceleration EU: m/s2, cm/s2, mm/s2, g, ft/s2, in/s2, mil/s2, gal

The Utility class has several methods for getting the enum _SpectrumScalingType, the spectrum

type names, and the engineering unit names.

Name Return Type Descriptions

GetListOfSpectrumTypes List<string> Takes in a ISignal and returns a list

of strings of spectrum type names

depending on the signal NVH type.

GetSpectrumType _SpectrumScalingType Takes in a string that is the

spectrum type name and returns the

equlivant enum

_SpectrumScalingType.

GetSpectrumTypeString string Takes in a _SpectrumScalingType

and returns the equlivant string

spectrum type name.

GetSignalQuantityEngiUnit

Strings

string[] Takes in a ISignal and returns a

string array that contain

engineering units of a signal

quantity.

Utility.GetListOfSpectrumTypes(ISignal);

Utility.GetSpectrumType(string);

Utility.GetSpectrumTypeString(_SpectrumScalingType);

Utility.GetSignalQuantityEngiUnitStrings(ISignal);

private void LbSignalDataInfo_SelectedIndexChanged(object sender, EventArgs e)
{
 if (lbSignalDataInfo.SelectedItem is ISignal signal)
 {
 if (signal.Type == SignalType.Frequency &&
 (signal.Properties.NvhType == _NVHType.FrequencyResponseSpectrum ||
 signal.Properties.NvhType == _NVHType.CrosspowerSpectrum ||
 signal.Properties.NvhType == _NVHType.Coherence ||
 signal.Properties.NvhType == _NVHType.Equidistant))
 {
 cbEngiUnit.Items.Clear();

Page 67 of 139

 cbEngiUnit.Enabled = false;
 }
 else
 {
 cbEngiUnit.Enabled = true;

 cbEngiUnit.Items.Clear();
 cbEngiUnit.Items.AddRange(Utility.GetSignalQuantityEngiUnitStrings(signal));
 cbEngiUnit.SelectedItem = signal.GetUnit(1);
 }

 if (signal.Type == SignalType.Frequency && !signal.Name.Contains("Swept THD") &&
 (signal.Properties.NvhType == _NVHType.AutopowerSpectrum ||
 signal.Properties.NvhType == _NVHType.OctaveAutopowerSpectrum ||
 signal.Properties.NvhType == _NVHType.OrderAutopowerSpectrum))
 {
 cbSpecScaleType.Enabled = true;

 cbSpecScaleType.Items.Clear();

 cbSpecScaleType.Items.AddRange(Utility.GetListOfSpectrumTypes(signal).ToArray());
 cbSpecScaleType.SelectedItem =
Utility.GetSpectrumTypeString(signal.Properties.specType);
 }
 else
 {
 cbSpecScaleType.Items.Clear();
 cbSpecScaleType.Enabled = false;
 }
 }
}

Reading NVH Test Configuration Parameters
A Noise, Vibration and Harshness (NVH) Parameter Set is a set of parameter keys that a signal

stores information regarding the signal properties, recording properties and testing configuration

parameters. For the list of parameter keys and their descriptions, refer to the Property Glossary

– NVHParameterSset Parameter Keys section.

For the complete list of fields in NVHParameterSet, it is recommended to find these fields in the

File Reader API for CI Measurement Data Class Methods.chm file under ASAM.ODS.NVH ->

NVHParameterSet Class -> NVHParameterSet Fields.

Page 68 of 139

To read the NVH Parameter Set stored in a ATFX file, each signal can get a NVH Test

Configuration Parameter value and type through the Utility GetSignalNVHParameter or

GetSignalProfileOrLimit with a NVHParameterSet parameter key. Most signals share the

same testing configuration parameter values.

The GetSignalNVHParameter returns a list of strings that contains the signal parameter data type

and the parameter value.

For certain signal parameters such as the Test Profile or Channel Limit Profile, the

GetSignalProfileOrLimit method is used to return a 2D list of strings where each list contains a

row of data.

In order to use the NVHParameterSet Class, users need to import ASAM.ODS.NVH.

There are also additional imports, such as the Common.Spider and EDM.Utils, that will be used

in this section.

using ASAM.ODS.NVH;

using Common.Spider;

using EDM.Utils;

Page 69 of 139

Reading a Signal NVH Parameter Key
ISignal signal = [IRecording object].Signals[0];

string signalParam = signal.GetParameter<string>(NVHParameterSet.testProfile)

string signalParam = signal.GetParameter<string>(NVHParameterSet.fullLevelElapsed);

string signalParam = signal.GetParameter<string>(NVHParameterSet.sampleRate);

etc.

Reading a Signal NVH Parameter Key Data Type
ISignal signal = [IRecording object].Signals[0];

string sigParamType = sig.GetParameterType(NVHParameterSet.sampleRate);
DT_FLOAT

string sigParamType = sig.GetParameterType(NVHParameterSet.fullLevelElapsed);
DT_DOUBLE

etc.

Reading a List of NVH Parameter Keys Through Utility Class
Given that there is a list of parameters for each signal, it would be better to store the list of

parameters into another list object for the user interface and other means of accessing the data.

The Utility GetListOfNVHParameterSet returns a list of strings with empty headers to easily

look through the list. The list will also have important parameters placed first and then the rest of

the NVHParameterSet keys.

Then, with the same as the previous Reading Signal sections, include the code snippet from

Reading the Signal Properties – Using a List to Store and Recall Signals to read the list of

signals from IRecording.

Utility.GetListOfNVHParameterSet();

var recordingPath = “C:\Sig001.atfx”;
if (RecordingManager.Manager.OpenRecording(recordingPath, out IRecording rec))
{
 lbSignalDataInfo.Items.AddRange(Utility.GetListOfAllSignals(rec).ToArray());
 lbSignalParameters.Items.AddRange(Utility.GetListOfNVHParameterSet().ToArray());

 if (lbSignalParameters.Items.Count > 0)
 lbSignalParameters.SelectedIndex = 0;
}

Page 70 of 139

Reading a NVH Parameter Key & Type Through Utility Class
Utility.GetSignalProfileOrLimit(ISignal sig, string parameterKey);

Utility.GetSignalNVHParameter(ISignal sig, string parameterKey);

private void ShowParameters(DataGridView grid, ISignal sig, string parameterKey)
{
 grid.Rows.Clear();

 if (parameterKey == NVHParameterSet.testProfile)
 {
 foreach (List<string> entry in Utility.GetSignalProfileOrLimit(sig, parameterKey))
 {
 grid.Rows.Add(entry.ToArray());
 }
 }
 else if (parameterKey == NVHParameterSet.testAbortLimit ||
 parameterKey == NVHParameterSet.testAlarmLimit ||
 parameterKey == NVHParameterSet.testNotchLimit)
 {
 foreach (List<string> entry in Utility.GetSignalProfileOrLimit(sig, parameterKey))
 {
 grid.Rows.Add(entry.ToArray());
 }
 }
 else
 {
 List<string> signalParam = Utility.GetSignalNVHParameter(sig, parameterKey);
 grid.Rows.Add(signalParam.ToArray());
 }
}

private void BtnSignalParam_Click(object sender, EventArgs e)
{
 string parameterKey = lbSignalParameters.SelectedItem as string;

if (lbSignalDataInfo.SelectedItem is ISignal signal &&
 !string.IsNullOrEmpty(parameterKey))

 {
 ShowParameters(dgvSignalDataInfo, signal, parameterKey);
 }
}

Page 71 of 139

Reading Merged Information
Depending on the ATFX file, it can contain multiple other atfx files. It is still converted into a

singular IRecording object with the RecordingManager OpenRecording. Then the Utility

GetMergeInfo is used to return a 2D list of strings, where each list contains data regarding each

ATFX file channels. It also output an int that is the number of ATFX files in the merged ATFX

file.

The code snippet below shows the extraction and display of data.

Utility.GetMergeInfo(IRecording, out int sigMapCount);

private void ShowMergeInfo(IRecording rec)
{
 try
 {
 dgvMergeInfo.SuspendLayout();
 dgvMergeInfo.Rows.Clear();

 List<List<string>> mergeInfo = Utility.GetMergeInfo(rec, out int sigMapCount);

 if (sigMapCount == 0)
 {
 dgvMergeInfo.Columns[0].Visible = false;
 dgvMergeInfo.Columns[1].Visible = false;
 }
 else
 {
 dgvMergeInfo.Columns[0].Visible = true;
 dgvMergeInfo.Columns[1].Visible = true;
 }

 foreach (List<string> merge in mergeInfo)
 {
 dgvMergeInfo.Rows.Add(merge.ToArray());
 }
 this.Refresh();
 }
 finally
 {

Page 72 of 139

 dgvMergeInfo.ResumeLayout();
 dgvMergeInfo.PerformLayout();
 }
}

Page 73 of 139

ATFX API Method List

The following section is a short preview of the various classes and interfaces in the API. For a

more detailed view, please refer to the File Reader API for CI Measurement Data Class

Methods.chm file.

List of Available Modules
Module Descriptions

Recording Manager Provide methods to manage/operate Recording Objects, e.g.

open or close Recording Objects

ODS Recording Provide methods to access properties of Recording Objects

ODS Signal Provide methods to access properties of Signal Objects

DateTimeNano Provide methods to create a DateTimeNano object with

similarities to DateTime but with more accuracy up to

nanoseconds.

Utility Provide methods to easily get data from the ATFX file

without having to understand the complexity of ASAM ODS

source code

Recording Objects refer to files recorded/saved in EDM.

Signal Objects refer to signals included in recording objects.

Recording Manager Module

1. OpenRecording

a. Description

Find and open the file based on the given file path. An IRecording object and the result

are returned.

Parameters Type Description

recordingPath String The path where the file is located.

recording IRecording The variable which the returned object is

store to.

Name to Be Called Type Descriptions

OpenRecording Method Open the file

CloseRecording Method Close the file

Page 74 of 139

b. Return

Type Description

bool true: the file is loaded

false: failed to load the file

Example:

2. CloseRecording

a. Description

Find and close the file based on the given file path. The result is returned.

Parameters Type Description

recordingPath string The path where the file is located.

b. Return

Type Description

bool true: the file is closed

false: failed to close the file

Example:

ODS Recording Module

Name to Be Called Type Description

RecordingProperty Property Properties of the file

Signals Property Signals included in the file

Page 75 of 139

ODSInstance Property ODS instances included in the file

The IRecording object can be converted to ODSRecording object before accessing its properties.

1) RecordingProperty

a. Descriptions

RecordingProperty contains properties of the file (the Recording object), listed below:

Attribute Name Descriptions

User The EDM account name when the file was

created.

Instruments The product name used to record/save data to the

file.

TestNote Test notes given by the user before the test ran

Name File Name

RecordingPath File Path

Version EDM version number when the file was created.

CreateTime This parameter defines when the signal was

recorded. It is not when the file is saved. This

parameter can show the time accuracy as high as

second. To obtain the starting recording time with

better accuracy, please add

“NanoSecondElapsed” in integer that represents

the additional nanoseconds elapsed.

MasterSN Serial number of the master module of the system

when the file was created

UserAnnotation Annotation added by the user

MeasurementType Measurement type of the file

Example:

Page 76 of 139

2) Signals

a. Descriptions

It returns the list of signals saved in the file. Each signal can be accessed by the ODS

Signal module.

Example:

3) ODSInstance

3.1 Descriptions

The ODSInstance attribute can be accessed only after the IRecording object returned by

the Recording Manager module is converted to ODSRecording object.

Each ODS attributes can be accessed through the ODSInstance attribute, e.g.

ODSInstance.Measurement.Equipments return the list of EquipmentPart, which

corresponds to an input channel.

Example:

ODS Signal Module

Name to Be Called Type Descriptions

Name Attirbute Signal Name

Type Attirbute Signal type, time/frequency domain

Page 77 of 139

FrameCount Attirbute Total number of frames in the signal

FrameSize Attirbute Size of each frame

UnitX Attirbute Unit of X-axis

UnitY Attirbute Unit of Y-axis

Properties Attirbute Signal properties. Different signal types have

different properties

GetFrame Method Return data of the specified frame of the signal

A snapshot of measurement data consisting of X,

Y and sometimes Z values.

GetParameter<T> Method Return the specified parameter by the given

name.

GetParameterType Method Return the specified parameter data type by the

given name.

1. Properties

a. Descriptions

Time domain and frequency domain signals have different signal properties.

For time domian signals, Properties refer to SignalProperties.

For frequency domian signals, Properties refer to FrequencyDomainSignalProperties.

Example:

2. GetFrame

a. Descriptions

Return data of the specified frame of the signal

Page 78 of 139

Parameters Type Descriptions

frameIndex int Index of the frame

b. Return

Type Descriptions

double[][] Signal data

double[0] contains values of X-axis

double[1] contains values of Y-axis

double[2] contains values of Z-axis (if available)

Example:

3. GetParameter<T>

a. Descriptions

Search through all ODS parameters for the one including the keyword (parameterKey). It

will be returned if found.

Parameters Type Descriptions

T Parameter type Specifies the type of the

object* to be returned

parameterKey string Keyword of the object* to be

returned

*An object refers to an ODS parameter of the signal.

Page 79 of 139

b. Return

Type Descriptions

T The type of the returned object* is determined by the object*

found in ODS parameters. If it is not found according to the

keyword, the original type is returned.

*An object refers to an ODS parameter of the signal.

Example:

DateTimeNano Module

Constructors Descriptions

DateTimeNano(DateTime, uint) Using this Constructor with a

IRecording.RecordingProperty.CreateTime and a

NVHMeasurement.NanoSecondElapsed will create a

DateTimeNano object that contains a DateTime with

ms_us_ns.

Example:

var recordingPath = @”C:\REC001.atfx”;

if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{

 ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new DateTimeNano(Utils.GetUTCTime
(nvhRec.RecordingProperty.CreateTime, null), nvhMeasurement.NanoSecondElapsed);

}

Page 80 of 139

Name to Be Called Type Descriptions

IsNanoTime bool Gets whether ms_us_ns exists / not equal to zero

TotalNanoSeconds ulong Get TotalSeconds in Nano Seconds

ToNanoString string Gets a string in the format of "DateTime

Milisecond.Microsecond.Nanosecond"

ms_us_ns uint We use this NanoSeconds==0 Distinguish

between normal time and nanosecond time

Milisecond.Microsecond.Nanosecond

000/000/000

Example:

var recordingPath = @”C:\REC001.atfx”;

if (RecordingManager.Manager.OpenRecording(recordingPath, out var rec))

{

ODSNVHATFXMLRecording nvhRec = rec as ODSNVHATFXMLRecording;

NVHMeasurement nvhMeasurement = nvhRec.Measurement as NVHMeasurement;

DateTimeNano createTimeUTC = new
DateTimeNano(nvhRec.Environment.GetUTCTime(nvhRec.RecordingProperty.CreateTime),
nvhMeasurement.NanoSecondElapsed);

Console.WriteLine(createTimeUTC.IsNanoTime);

Console.WriteLine(createTimeUTC.ms_us_ns);

Console.WriteLine(createTimeUTC.TotalNanoSeconds);

Console.WriteLine(createTimeUTC.ToNanoString());

}

Utility Module

Name to Be Called Type Descriptions

GetListOfAllRecordings Method Takes in a IRecording and returns a

List<string> that contains all available

recordings in a ATFX file.

GetListOfAllSignals Method Takes in a IRecording and returns a

List<string> that contains all available

signals in a ATFX file.

GetListOfNVHParameterSet Method Returns a List<string> that contains all

available NVHParameterSet keys and some

Page 81 of 139

empty header strings for categories and

easier to look through.

GetListOfProperties Method Takes in an object and bool and returns a

2D List<string> where each list contains

the property name and property value.

GetChannelTable Method Takes in a IRecording and returns a 2D

List<string> where each list contains a

channel row.

GetSignalNVHParameter Method Takes in a ISignal and string and returns a

List<string> that contains the parameter

data type and parameter value.

GetSignalProfileOrLimit Method Takes in a ISignal and string and returns a

2D List<string> where each list contains a

row of a test profile.

GetMergeInfo Method Takes in a IRecording and returns an int

count of how many ATFX files in the

merged ATFX file. And a 2D List<string>

where each list contains data regarding

each ATFX file channel.

GetListOfSpectrumTypes Method Takes in a ISignal and returns a list of

strings of spectrum type names depending

on the signal NVH type.

GetSpectrumType Method Takes in a string that is the spectrum type

name and returns the equlivant enum

_SpectrumScalingType.

GetSpectrumTypeString Method Takes in a _SpectrumScalingType and

returns the equlivant string spectrum type

name.

GetSignalQuantityEngiUnitStrings Method Takes in a ISignal and returns a string array

that contain engineering units of a signal

quantity.

Property Glossary
The following properties and methods can be found in the chm file and are listed here for a

quicker reference and to highlight the most important properties and methods for the ATFX API.

RecordingProperty
Property Type Description

CreateTime DateTime This parameter defines when the signal

was recorded. It is not when the file is

saved. This parameter can show the

Page 82 of 139

time accuracy as high as second. To

obtain the starting recording time with

better accuracy, please add

“NanoSecondElapsed” in integer that

represents the additional nanoseconds

elapsed.

DeviceSNs string Serial numbers of the 1 or many

modules used in the recording

Instruments string The product name used to record/save

data to the file.

MasterSN uint32 Serial number of the master module of

the system when the file was created

MeasurementType MeasurementConfigType Measurement type of the file

Name string File Name

RecordingPath string File Path

RecordingTypeName string Recording Type Name based on its file

extension

TestNote string Test notes given by the user before the

test ran

Type RecordingType The type of recording based on its file

extension

Ex. ATFX, GPS, TS

User string The EDM account name when the file

was created.

UserAnnotation string Annotation added by the user

Version Version EDM version number when the file

was created.

SignalProperties
Property Type Description

BlockSize uint64 Number of time data points captured in

the signal

DeviceSN string The recording instrument serial

numbers

Duration string Amount of time covered by the signal

GeneratedTime DateTimeNano The time when the data is saved

Page 83 of 139

Instruments string The recording instruments used in

measurement

IsVCSSignal bool Determines if VCS Signal from

Random, Sine, Shock, or TWR

MeasurementType MeasurementConfigType Measurement type of the signal

NvhType _NVHType The Noise, Vibration, and Harshness

Type of the signal

RecordingProperties RecordingProperty The recording property of the signal

SamplingRate string Number of data samples acquired per

second

SignalName string Signal Name

SignalType SignalType Signal type, time/frequency domain

SoftwareVersion Version The software version of the recording

instrument when the data is saved

UnitX string Engineering Unit of X-axis

UnitY string Engineering Unit of Y-axis

UnitZ string Engineering Unit of Z-axis

NVHParameterSet Parameter Keys
The following property list deprived from the ISignal GetParameter<T> and GetParameterType

where the methods gets the the value and data type of each parameter key.

Parameter Key Type Description

abortSensitivity float Defines the threshold for when an abort is called,

based on several independent criteria

average long Number of blocks that are averaged for the control

spectrum

averageMode long The method of averaging tests over blocks

averageNumber long The number of blocks that are ensemble averaged for

the signal spectrum

bandWidth float Bandwidth of the proportional filter

blockT float Duration of time for the block

blockTSize string Duration of time for the block over block size

controlPeak double Control peak (m/s2) when data saved

controlRMS double Current control RMS (m/s2) when data saved

Page 84 of 139

controlStrategy string Determines whether one or multiple control channels

are used, and how the composite control signal is

generated

currentFrequency float Current frequency when data saved (Sine)

deltaF double Delta Frequency

deltaFreq string Known as the frequency resolution, this sets the

spacing between spectral frequency lines

deltaT float Delta Time

displacementPkPk double Displacement peak peak (m) when data saved

DOF long Degree Of Freedom

driveLimit float Limits the absolute maximum voltage output of the

drive signal during the schedule test

drivePK double Current drive peak (voltage) when data saved

fftAverageOnOff long Whether the test uses FFT average or not

filterType long Determine how the filter bandwidth is changing and

the bandwidth

frequencyRange double The maximum frequency resolved by the FFT

transform by adjusting the sample rate

fullLevelElapsed double Time since full level has elapsed in seconds

Ex. 636.2

highRPM float High end of RPM

initialDrive float The initial peak voltage of the drive signal that is set

before it ramps up

intervalBetweenPulses double The time period between successive pulses

lines string Number of spectral lines, proportional to block size

lowRPM float Low end of RPM

maximumDrive double A safety limit set to protect the shaker during sine

ramping up and pre-test process

measureStrategy string Defines how the sine waves are measured

overlapRatio string Determines what proportion of each time block is

overlapped with the previous block when calculated

the FFT

remaining double Time remaining in test schedule in seconds

Ex. 299

sampleRate float Number of data samples acquired per second

Page 85 of 139

Ex. 5120

sigmaClipping float Limits the peaks of the output voltage distribution

based on a factor of Sigma

signalPlotPoints long The number of frequency lines of the displaying

spectrum

spiderSN string The recording device serial number

Ex. “2590976”

spiderSystem string The recording instrument system configuration

Ex. “SYS_2590976”

sweepCount long The test amount of times for sweep (Sine)

sweepType string Determine how the signal plot points are distributed

across the frequency axis

targetPeak double Target peak (m/s2) when data saved

targetRMS double Target RMS (m/s2) when data saved

testAbortLimit string The test abort limit profile

testAlarmLimit string The test alarm limit profile

testLastRunTime string Last run time of the test

Ex. “03/07/2022 15:12:00”

testLastSavedTime string Last saved time of the test

Ex. “03/07/2022 15:23:19”

testName string The test name

Ex. “Random34”, “Shock1”

testNotchLimit string The test notch limit profile

testProfile string The test profile

testSchedule string The test event schedule

Ex.

testStatus string The test status

Ex. “Running”, “Stopped”

testType string The test type

Page 86 of 139

Ex. “VCS_Random”

totalElapsed double Total elapsed time when data saved (time in

Random/Sine/TDR, pulses in Shock system)

velocityPk double Velocity peak (m/s) when data saved

AoEnvironment
Property Type Description

TimeZone string The local timezone of where the recording

instrument is

Examples: "UTC-07:00","UTC+05:45"

Timezones are additional information, they

do not change time values.

Method Return Type Description

GetLocalTime DateTime Get time in local format

Ex. 3/18/2022 6:46:32 PM

GetUTCTime DateTime Get time in UTC format

Ex. 3/18/2022 2:46:32 PM

NVHMeasurement
Property Type Description

Altitude double The measurement of altitude according to the

device position

GPSEnabled bool Determines whether GPS location is on or

off

Latitude double The measurement of latitude according to the

device position

Longitude double The measurement of longitude according to

the device position

MeasurementBegin DateTime The begin time of the measurement when the

data is measured

MeasurementEnd DateTime The end time of the measurement when the

data is measured

NanoSecondElapsed uint32 The total elapsed time in nano seconds since

measurement begin. This parameter can be

used together with CreateTime to construct a

Page 87 of 139

complete recording starting time that has a

format of:

yyyy/mm/dd/hh/ss/ms/us/ns

NVHEnvironment
Property Type Description

TimeZone string The local timezone of where the recording

instrument is

Examples: "UTC-07:00","UTC+05:45"

Timezones are additional information, they

do not change time values.

InstruSoftwareVersion string The software version of the recording

instrument when the data is saved

HardwareVersion string The hardware version of the recording

instrument when the data is saved

FirmwareVersion string The firmware version of the recording

instrument when the data is saved

BitVersion string The bit version of the recording instrument

when the data is saved

Page 88 of 139

ATFX API Coding Languages

The ATFX API have C# DLL files that are used with the C# language, but there are ways to use

the DLL files for other languages such as Python, LabVIEW and Matlab. The following section

will demostrate how to import the DLL files and how to call the methods and properties.

C# Demo Program
This is a demo program that demonstrates the API with a user interface that opens and displays

the data stored in a ATFX file for the user to see. Instructions to how to import the DLL files and

how to call the methods and properties are listed in the API C# Demo Examples.

Upon launching the demo program, click Open to select a ATFX file and the program will

display the stored data.

Page 89 of 139

Page 90 of 139

The below images show the various type of data stored in a ATFX file:

1) Record Information – Contains information regarding data format, the EDM

version, spider device and so on.

2) DateTimeNano Data – Contains infromation regarding the recording create time

and nanoseconds

Page 91 of 139

3) Signal Basic Information – Contains information regarding each signal properties,

such as engineering units, signal block size, type and so on.

4) Signal Advanced Information – Contains more in-depth data values and properties

of each signal.

Page 92 of 139

5) Signal Data – Contains the signal frame data. There may be a chance that the data

displayed in the ATFX API is different from what is displayed on EDM. This is due

to the spectrum type being a display parameter and not saved in the ATFX file, thus

it will default to EUrms2.

Page 93 of 139

6) Signal Parameters – Contains a list of signal properties with the properties’ names

and the properties’ values that users can call in custom programs.

7) Signal Generate Time – Contains more advance information regarding a signal or

atfx file generated time.

8) Channel Table – Contains information regarding the signal test’s input channel

table.

9) Merge Information – Contains information about mutiple other atfx files if the file

is merged.

Page 94 of 139

Python Demo Script
Importing C# DLL files
In order to import C# DLL to be used in python, users will have to download a package called

Python.NET. There are other packages that can also import C# related libraries, such as

IronPython.

https://github.com/pythonnet/pythonnet

pip install pythonnet

There are 2 additional packages that the python demo scripts used to plot out the signal frame

data and easily convert a C# array to a Python array, Matplotlib and Numpy.

pip install matplotlib

pip install numpy

If for some reason the install command returns a fatal error in launcher unable to create process

using ‘ ” ” ’ then adding python -m to the pip install will work around the issue.

After installing the packages, users can now import .NET Common Language Runtime, add

references to the ATFX API DLL files and import them to the python script. The following code

snippet below shows the importation of the ATFX API DLL files.

#---Pythonnet clr import
import clr
Change file path here to whereever the DLL files are
parentPath =
"C:\\MyStuff\\DevelopmentalVer\\bin\\AnyCPU\\Debug\\Utility\\CIATFXReader\\"

clr.AddReference(parentPath + "CI.ATFX.Reader.dll")
clr.AddReference(parentPath + "Common.dll")
clr.AddReference('System.Linq')
clr.AddReference('System.Collections')

import numpy as np
import matplotlib.pyplot as plt

#---C# .NET imports & dll imports
from EDM.Recording import *
from EDM.RecordingInterface import *
from ASAM.ODS.NVH import *

https://github.com/pythonnet/pythonnet

Page 95 of 139

from EDM.Utils import *
from Common import *
from Common import _SpectrumScalingType
from Common.Spider import *
from System import *
from System.Diagnostics import *
from System.Reflection import *
from System.Text import *
from System.IO import *

Then users can call any methods and properties from the DLL files and use them accordingly.

Python Script Code Example
An example below shows how to open a recording and show its recording properties, GPS info

and one of its signal properties.

#---Functions
def ShowGPSInfo(recordingPath):
 recording = ODSNVHATFXMLRecording(recordingPath)

 if type(recording) is ODSNVHATFXMLRecording:
 nvhRec = recording
 nvhMeasurement = nvhRec.Measurement
 nvhEnvironment = nvhRec.Environment
 bGPS = nvhMeasurement.GPSEnabled
 if bGPS:
 print("GPS Enabled: ", bGPS)
 print("Longitude: ", nvhMeasurement.Longitude)
 print("Latitude: ", nvhMeasurement.Latitude)
 print("Altitude: ", nvhMeasurement.Altitude)
 print("Nanoseconds Elapsed: ", nvhMeasurement.NanoSecondElapsed)

 if not String.IsNullOrEmpty(nvhEnvironment.TimeZoneString):
 print("Time Zone: ", nvhEnvironment.TimeZoneString)

 print("Created Time (Local): ", nvhRec.RecordingProperty.CreateTime)
 print("Created Time (UTC): ",
Utils.GetUTCTime(nvhRec.RecordingProperty.CreateTime, None))

#---Main Code
print("Running Main Code")

Change file path here to whereever signal or recording files are
recordingPath = "C:\\Users\\KevinCheng\\Downloads\\gps test example\\"
ATFX file path, change contain the file name and correctly reference it in
RecordingManager.Manager.OpenRecording
recordingPathTS = recordingPath + "{4499520}_REC_{20220419}(1).atfx"

#OpenRecording(string, out IRecording)
dummy data is required for the OpenRecording for it to correctly output data
Make sure to reference the correct file string
dummyTest1, recording = RecordingManager.Manager.OpenRecording(recordingPathTS, None)

print("\nRecording Properties\n")
for prop in Utility.GetListOfProperties(recording.RecordingProperty):

Page 96 of 139

 print(prop[0], prop[1])

print("\nRecording GPS Properties\n")
ShowGPSInfo(recordingPathTS)

print("\nSignal 1 Properties\n")
for prop in Utility.GetListOfProperties(recording.Signals[0].Properties):
 print(prop[0], prop[1])

print("\nSignal 1 Properties GeneratedTime\n")
for prop in Utility.GetListOfProperties(recording.Signals[0].Properties.GeneratedTime):
 print(prop[0], prop[1])

Example Print Statements

Running Main Code

Recording Properties

User Unknown Owner

Instruments GRS

TestNote Untitled Test Note

RecordingName {4499520}_REC_{20220419}(1)

RecordingPath C:\Users\KevinCheng\Downloads\gps test

example\{4499520}_REC_{20220419}(1).atfx

RecordingType ODS_ATF_XML

RecordingTypeName ASAM ODS Format - XML

SavingVersion 10.0.8.34

DeviceSNs 4499520

MasterSN 4499520

MeasurementType None

Recording GPS Properties

GPS Enabled: True

Longitude: 0.0

Latitude: 37.38046

Altitude: 12.42

Nanoseconds Elapsed: 629999338

Page 97 of 139

Time Zone: Eastern Standard Time;-300;(UTC-05:00) Eastern Time (US & Canada);Eastern

Standard Time;Eastern Daylight

Time;[01:01:0001;12:31:2006;60;[0;02:00:00;4;1;0;];[0;02:00:00;10;5;0;];][01:01:2007;12:31:

9999;60;[0;02:00:00;3;2;0;];[0;02:00:00;11;1;0;];];

Created Time (Local): 4/18/2022 2:47:10 PM

Created Time (UTC): 4/18/2022 6:47:10 PM

Signal 1 Properties

MeasurementType None

SignalType Time

GeneratedTime 4/18/2022 2:47:10 PM.629.999.338

SamplingRate 51.20 kHz

BlockSize 1793024

FrameCount 1

Duration 35.02 (s)

UnitX Time (s)

UnitY V

UnitZ N/A

Instruments GRS

DeviceSN 4499520

SoftwareVersion 10.0.8.34

NvhType Equidistant

AcquisitionCalculateMethod Undefined

IsVCSSignal False

IsLocalRecordSignal False

Signal 1 Properties GeneratedTime

Year 2022

Month 4

Day 18

Hour 14

Page 98 of 139

Minute 47

Second 10

Millisecond 0

TimeOfDay 14:47:10

IsNanoTime True

TotalNanoSeconds 53230629999338

The python script in the ATFX API package has more examples such as getting a list of signals

and displaying the frame data of 1 signal and getting a list of recordings and displaying each

recording properties.

LabVIEW Demo Script
In order to open and run the provided LabVIEW Demo Script, it is recommended to use

LabVIEW 2021 or 2021 SP1 32-bit version.

Importing C# DLL files
LabView comes with the combatility of importing C# dll files and articles on how to do so.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US

The ATFX API for LabVIEW comes with an additional DLL file called LabVIEWDotNetAPI

that provides methods and properties to open and read ATFX files in LabVIEW. It is similar to

the C# demo code except encapsulated into a library. Thus if there are additional methods or

properties needed, the customer must send a request to Crystal Instrument software team.

Once the .vi file block diagram is up, users can right click the empty space and locate

Connectivity -> .NET then any of the following nodes.

https://knowledge.ni.com/KnowledgeArticleDetails?id=kA03q000000YGggCAG&l=en-US

Page 99 of 139

If the user selects the Constructor Node and place into the diagram, another window will pop

up for selecting the .NET constructor reference. If the ATFX API dll files are not in the assembly

list, then users can click Browse and add in the dll files.

Page 100 of 139

LabVIEW Block Diagram Example
The following shows the block diagram used to open the ATFX file and display its data from the

Examples_ReadATFX.vi file.

Page 101 of 139

The following shows the GUI of the ATFX API LabView Reader and its usage.

Users open the file folder icon button to locate a atfx file, then click Open to extract and display

the recording data.

Page 102 of 139

Here is a display of the signal properties, frame data and generated time data.

Matlab Demo Script
In order to open and run the provided Matlab Demo Script, it is recommended to use Matlab

R2021b or later version.

Importing C# DLL files
In the recent versions of Matlab allow loading DLL files by using NET.addAssembly().

% Load common and reader dll
NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
Common.dll');

Page 103 of 139

NET.addAssembly('C:\MyStuff\DevelopmentalVer\bin\AnyCPU\Debug\Utility\CIATFXReader\
CI.ATFX.Reader.dll');

Matlab Script Code Example
Then users can call any methods and properties similar to C#.

An example below shows how to open a recording and display its recording properties and signal

frame data.

% Create a atfx recording instance
rec =
EDM.Recording.ODSNVHATFXMLRecording('C:\Users\KevinCheng\Documents\EDM\test\Random6
9\Run3 Jul 01, 2022 11-20-16\SIG0004.atfx');

% Use item function to get a time signal instance
sig = Item(rec.Signals,0);

% Display signal properties
disp(System.String.Format("Name:{0}",sig.Name));
disp(System.String.Format("X Unit:{0}",sig.Properties.xUnit));
disp(System.String.Format("Y Unit:{0}",sig.Properties.yUnit));
disp(System.String.Format("GPS Enable:{0}",rec.Measurement.GPSEnabled));
disp(System.String.Format("Longitude:{0}",rec.Measurement.Longitude));
disp(System.String.Format("Latitude:{0}",rec.Measurement.Latitude));
disp(System.String.Format("Altitude:{0}",rec.Measurement.Altitude));
disp(System.String.Format("Time zone:{0}",rec.Environment.TimeZoneString));
disp(System.String.Format("Created Time
(Local):{0}",rec.RecordingProperty.CreateTime));
disp(System.String.Format("Created Time
(UTC):{0}",Common.Utils.GetUTCTime(rec.RecordingProperty.CreateTime, [])));
disp(System.String.Format("Nanoseconds
Elapsed:{0}",rec.Measurement.NanoSecondElapsed));

dateTimeNano = Common.DateTimeNano(rec.RecordingProperty.CreateTime,
rec.Measurement.NanoSecondElapsed);
disp(System.String.Format("DateTimeNano Object:{0}",dateTimeNano));

disp("display signal frame data");
% Get signal frame
frame = sig.GetFrame(0);
% Convert .Net double[][] array to matlab cell
matFrame = cell(frame);
% Long format, showing more decimal places
format long;
% Display the cell(frame) content
%celldisp(matFrame);
% Convert back to mat array
xVals = cell2mat(matFrame(1));
yValues = cell2mat(matFrame(2));

%plot the signal
plot(xVals,yValues,'r');
xlabel(string(sig.Properties.xQuantity)+" ("+string(sig.Properties.xUnit)+")");
ylabel(string(sig.Properties.yQuantity)+" ("+string(sig.Properties.yUnit)+")");

Page 104 of 139

title("Plot of the "+string(sig.Name));
legend(string(sig.Name));

Example Output

Page 105 of 139

Post Analysis Software Integrates ATFX API

The Feature that Utilizes ATFX Reader API in PA Software

The following screenshots of the Post Analysis Software shows a feature that integrates ATFX

Reader API, which reads and shows all the information in atfx files that are created by Crystal

Instruments products. The ATFX Reader API not only can be integrated in software products of

Crystal Instruments, but also can be licensed to users to customize their software.

Page 106 of 139

Page 107 of 139

Appendix
Time Domain Signals
Time domain signals displays signal amplitude (y-axis) over a period of time (x-axis). These

types of signals are not affected by changes in spectrum types.

Time Stream
The time stream signals are the raw time waveforms applied to the input channels. They are

displayed with relative time on the Y-axis.

They are a live feed of time data, useful for live monitoring a signal in the time domain. Thus,

Time Stream signals are not saved into the ATFX file.

A Time Stream signal from an EDM VCS Random test:

Time Block
Time Blocks are a contiguous segment of time domain data, which can then be transformed into

the frequency domain. The block size is often a power of two.

A Time Block signal from an EDM VCS Random test:

Page 108 of 139

ATFX API C# Demo display

Frequency Domain Signals
Frequency domain signals displays signal amplitude (y-axis) over a frequency range (x-axis).

Frequency domain signals are usually expressed in Hz and calculated from an equivalent "block"

of time domain data (also known as "frame") through mathematical transforms, such as the

Fourier Transform.

Here is a list of frequency signals and their short form:

Frequency Spectrum Full Name EDM / ATFX Spectrum Abbreviation

Auto Power Spectrum APS

Frequency Response Function FRF

H

Fast Fourier Transform FFT

Page 109 of 139

Cross Power Spectrum CPS

Coherence Function COH

Sine Spectrum

Shock Response Spectrum MaxiSRS

PosSRS

NegSRS

Order ORDSpec

Octave OCT

Fast Fourier Transform Spectral Analysis Linear (FFT)
Digital signal processing technology includes FFT based frequency analysis, digital filters and

many other topics. This chapter introduces the FFT based frequency analysis methods that are

widely used in all dynamic signal analyzers. CoCo has fully utilized the FFT frequency analysis

methods and various real time digital filters to analyze the measurement signals.

The Fourier Transform is a transform used to convert quantities from the time domain to the

frequency domain and vice versa, usually derived from the Fourier integral of a periodic function

when the period grows without limit, often expressed as a Fourier transform pair. In the classical

sense, a Fourier transform takes the form of:

where:

x(t) - continuous time waveform

f - frequency variable

j - complex number

X(f) - Fourier transform of x(t)

Mathematically the Fourier Transform is defined for all frequencies from negative to positive

infinity. However, the spectrum is usually symmetric and it is common to only consider the

single-sided spectrum which is the spectrum from zero to positive infinity. For discrete sampled

signals, this can be expressed as:

where:

x(n) - samples of time waveform

Page 110 of 139

n - running sample index

N - total number of samples or “frame size”

k - finite analysis frequency, corresponding to “FFT bin centers”

X(k) - discrete Fourier transform of x(k)

In most DSA products, a Radix-2 DIF FFT algorithm is used, which requires that the total

number of samples must be a power of 2 (total number of samples in FFT = 2m, where m is an

integer).

Selecting different spectrum types will not affect the FFT spectrum in Real + Imaginary values.

Linear Spectrum

A linear spectrum is the Fourier transform of windowed time domain data. The linear spectrum is

useful for analyzing periodic signals. You can extract the harmonic amplitude by reading the

amplitude values at those harmonic frequencies.

An averaging technique is often used when synchronized triggering is applied. Because the

averaging is taking place in the linear spectrum domain, or equivalently, in the time domain,

based on the principles of linear transform, averaging makes no sense unless a synchronized

trigger is used.

In many DSA products, amplitude correction is automatically applied when

selecting different Spectrum Types.

The linear spectrum is saved internally in the complex data format with real and imaginary parts.

Therefore, you should be able to view the real, imaginary, amplitude, or the phase part of the

spectrum.

An FFT signal from an EDM DSA FFT Analysis test:

Page 111 of 139

ATFX API C# Demo display

The ATFX API will read the FFT in Real & Imaginary values.

Page 112 of 139

Auto Power Spectrum (APS)
Spectral analysis of data has for a long time been popular in characterizing the operation of

mechanical and electrical systems. A type of spectral analysis, the power spectrum (and power

spectral density), is especially popular because a “power” measurement in the frequency domain

is one that engineers readily accept and apply in their solutions to problems. Single channel

measurements (auto-power spectra) and two channel measurements (cross-power spectra) have

both played important roles.

In many DSA products, Power Spectrum Analysis is a general name for computing the

following three spectrum types:

• Power Spectrum: The unit is EU2

• Power Spectrum Density(PSD): The unit is EU2/Hz

• Energy Spectrum Density(ESD): The unit is EU2S/Hz

In power spectrum measurements, window amplitude correction is used to get un-biased final

spectrum readings at specific frequency. In PSD or ESD Spectrum measurements,

window energy correction is always used to get an un-biased spectral density reading.

The magnitude of the frequency components of signals are collectively called the amplitude

spectrum. In many applications, the quantity of interest is the power or the rate of energy transfer

proportional to the squared magnitude of the frequency components. The average squared

magnitudes of all the DFT frequency lines are collectively referred to as the Power Spectrum,

Gxx.

The averaging process is more properly termed an ensemble average, wherein the squared

amplitude from N signal blocks at each measured frequency, f, are averaged together. Letting an

asterisk (*) denote conjugation of a complex number, the “power” averaging process is defined

by:

𝑮𝒙𝒙(𝒇) = |𝑿(𝒇)|𝟐 =
𝟏

𝑵
∑ 𝑿𝒌(𝒇)𝑿𝒌

∗ (𝒇)

𝑵

𝒌=𝟏

APS signals from an EDM VCS Random test:

Page 113 of 139

ATFX API C# Demo display

Spectrum Types
Several Spectrum Types are given for both Linear Spectrum and Power Spectrum measurements

in CoCo and EDM. The concept of spectrum type is explained below in detail.

First let’s consider the signals with periodic nature. These can be the signals measured from a

rotating machine, bearing, gearing, or anything that repeats. In this case we would be interested

in amplitude changes at fundamental frequencies, harmonics or sub-harmonics. In this case, you

can choose a spectrum type of EUpk, EUpkpk or EUrms.

A second scenario might consist of a signal with a random nature that is not necessarily periodic.

It does not have obvious periodicity therefore the frequency analysis could not determine the

“amplitude” at certain frequencies. However, it is possible to measure the r.m.s. level, or power

level, or power density level over certain frequency bands for such random signals. In this case,

you must select one of the spectrum types of EUrms
2/Hz, or EUrms/sqrt(Hz), which is called power

spectral density, or root-mean squared density.

Page 114 of 139

A third scenario might consist of a transient signal. It is neither periodic, nor stably random. In

this case, must select a spectrum type as EU2S/Hz, which is called energy spectrum.

In many applications, the nature of the data cannot be easily classified. Care must be taken to

interpret the data when different spectrum types are used. For example, in the environmental

vibration simulation, a typical test uses multiple sine tones on top of random profile, which is

called Sine-on-Random. In this type application, you have to observe the random portion of the

data in the spectrum with EUrms2/Hz and the sine portion of the data with EUpk.

The image below shows a general flow-chart to choose one of the measurement techniques and

spectrum types for linear or auto spectrum:

Flow chart to determine measurement technique for various signal types.

The following figures illustrate the results of different measurement techniques on a 1 volt pure

sine tone. The figures include RMS, Peak or Peak-Peak value for the amplitude, or power value

corresponding to its amplitude.

Notice these readings can only be applied to a periodic signal. If you applied these measurement

techniques to a signal with random nature, the spectrum would not be a meaningful

representation of the signal.

It should also be noted that since a window is applied in time domain, which corresponds a

convolution in the linear spectrum, we cannot have both a valid amplitude and correct energy

correction at the same time. Use the flow chart to select appropriate spectrum types.

In a Linear Spectrum measurement, a signal is saved in its complex data format which includes

both real and imaginary data. Then is averaging operation applied to the linear spectrum.

Page 115 of 139

In a Power Spectrum measurement, the averaging operation is applied to the squared spectrum,

which has only real part. Because of different averaging techniques, the final results of Linear

Spectrum and Power Spectrum will be different even though the same spectrum type is used.

Spectrum Types selection only applies to Power Spectrum and Linear Spectrum signals.

Spectrum Types do not apply to transfer functions, phase functions or coherence functions.

EUpk or EUpkpk

The EUpk and EUpkpk displays the peak value or peak-peak value of a periodic frequency

component at a discrete frequency. These two spectrum types are suitable for narrowband

signals.

A sine wave is measured with EUpk spectrum unit. The sine waveform has a 1V amplitude.

A sine wave is measured with EUrms spectrum unit. The peak reading is 0.707V. The sine waveform has a 1V

amplitude.

EUrms

The EUrms displays the RMS value of a periodic frequency component at a discrete frequency.

This spectrum type is suitable for narrowband signals.

Page 116 of 139

EUrms)2 Power spectrum

The (EUrms)
2 displays the power reading of a periodic frequency component at a discrete

frequency. This spectrum type is suitable for narrowband signals.

A sine wave is measured with (EUrms)2 spectrum unit. The peak reading is 0.5V2. The sine waveform has a 1V

amplitude.

EU2/Hz, Power Spectrum Density

The EU2/Hz is the spectrum unit used in power spectrum density (PSD) calculations. The unit is

in engineering units squared divided by the equivalent filter bandwidth. This provides power

normalized to a 1Hz bandwidth. This is useful for wideband, continuous signals. EU2/Hz really

should be written as (EUrms)2/Hz. But probably due to the limitation of space, people put it as

EU2/Hz.

White noise with 1 volt RMS amplitude displays as 100 u Vrms2/Hz.

The image above shows a white noise signal with 1Vrms amplitude or 1V2 in power level. The

bandwidth of the signal is approximately 10000 Hz and the V2/Hz reading of the signal is around

0.0001 V2/Hz. The 1 V RMS can be calculated as follows:

1 Vrms = sqrt (10000Hz * 0.0001 V2/Hz)

EU2S/Hz, Energy Spectrum Density

The EU2S/Hz displays the signal in engineering units squared divided by the equivalent filter

bandwidth, multiplied by the time duration of signal. This spectrum type provides energy

normalized to a 1Hz bandwidth, or energy spectral density (ESD). It is useful for any signals

when the purpose is to measure the total energy in the data frame.

Page 117 of 139

The ESD is calculated as follows:

Values for ESD = values of PSD * Time Factor

were the Time Factor = (Block size)/∆f and ∆f is the sampling rate / block size.

Notice that in EU2/Hz, or EU2S/Hz, EU really means the RMS unit of the EU, i.e., EUrms.

Random signal with 1 volt RMS amplitude and Energy Spectrum Density format.

Cross Power Spectrum (CPS)
The Cross Spectrum characterizes the relationship between two spectra. For two signals 𝑥 and 𝑦,

with frequency components X(f)and Y(f), it is defined as:

𝑮𝒙𝒚(𝒇) =
𝟏

𝑵
∑ 𝒀𝒌(𝒇)𝑿𝒌

∗ (𝒇)

𝑵

𝒌=𝟏

The Cross Spectrum reflects the correlation between the two signals. While the Power Spectrum

is real-valued, the Cross Spectrum is complex. This means that it also describes the phase

relationship between the two signals.

Selecting different spectrum types will not affect the CPS spectrum in Real + Imaginary values.

A CPS signal from an EDM DSA FFT Analysis test:

Page 118 of 139

ATFX API C# Demo display

The ATFX API will read the CPS in Real & Imaginary values.

Page 119 of 139

Frequency Response Function (FRF)
The cross-power spectrum method is used for estimating the frequency response function

between channel x and channel y. The equation is:

where Gyx is the averaged cross-spectrum between the input channel x and output channel

y. Gxx is the averaged auto-spectrum of the input. Either power spectrum, power spectral

density, or energy spectral density can be used here because of the linear relationship between

input and output.

This approach will reduce the effect of the noise at the output measurement end, as shown below.

Figure 1. Frequency Response Function Computation

The frequency response function has a complex data format. You can view it in real, imaginary,

magnitude, or phase display format.

Please note when describing a system with input x and output y as shown above, some people are

used to a notation Hyx instead of Hxy. Most DSA products follow the convention used in the

reference books listed before. Hxy stands for a frequency response function with input x and

output y.

Selecting different spectrum types will not affect the FRF spectrum in Real + Imaginary values.

An FRF signal from an EDM VCS Random test:

Page 120 of 139

Page 121 of 139

ATFX API C# Demo display

The ATFX API will read the FRF in Real & Imaginary values.

Coherence Function (COH)

The coherence function is defined as:

where Gyx is the averaged cross-spectrum between the input channel x and output channel

y. Gxx and Gyy are the averaged auto-spectrum of the input and output. Either power spectrum,

power spectral density, or energy spectral density can be used here because of the linear

relationship between input and output.

When the averaging number is 1, coherence function has a meaningless result of 1.0 due to the

estimation error of the coherence function.

The coherence function is a non-dimensional real function in the frequency domain. It can only

be viewed in the real format.

Please note when describing a system with input x and output y as shown above, some people are

used to a notation Hyx instead of Hxy. Most DSA products follow the convention used in the

reference books listed before. Hxy stands for a frequency response function with input x and

output y.

Selecting different spectrum types will not affect the COH spectrum.

Page 122 of 139

An COH signal from an EDM DSA FFT Analysis test:

ATFX API C# Demo display

Sine Spectrum
Spectrum is the sine measurement value plotted across the frequency. Usually it is represented in

acceleration peak value. The sine measurement is taken at the output of tracking filter. The

spectrum in sine is not the FFT transform of a time measurement. It is just the history trace of

equivalent sine peak values drawn across the whole frequency. The resolution of spectrum signal

has nothing to do with the resolution of frequency change in the control process.

The magnitude of the frequency components of signals are collectively called the amplitude

spectrum. In many applications, the quantity of interest is the power or the rate of energy transfer

that is proportional to the squared magnitude of the frequency components. The average squared

Page 123 of 139

magnitudes of all the DFT frequency lines are collectively referred to as the Power Spectrum,

Gxx.

The averaging process is more properly termed an ensemble average, wherein the squared

amplitude from N signal blocks at each measured frequency, f, are averaged together. Letting an

asterisk (*) denote conjugation of a complex number, the “power” averaging process is defined

by:

𝑮𝒙𝒙(𝒇) = |𝑿(𝒇)|𝟐 =
𝟏

𝑵
∑ 𝑿𝒌(𝒇)𝑿𝒌

∗ (𝒇)

𝑵

𝒌=𝟏

Selecting different spectrum types will affect the Sine spectrum.

Two Sine spectrum signals from an EDM VCS Swept Sine test:

ATFX API C# Demo display

Page 124 of 139

Shock Response Spectrum (SRS)
The Shock Response Spectrum (SRS) is an entirely different type of spectral measurement. It is

used to access the damage potential of a transient event such as a package drop or an earthquake.

The SRS was first proposed by Dr. Maurice Biot in 1932.

The SRS is not the spectrum of the pulse. (The FFT provides this.) The SRS is not a linear

operator as the FFT is. That is, an SRS does not uniquely define a single waveform. Many very

different transient time-histories can produce the same SRS.

What the Shock Response Spectrum is, is the representative response of a class of simple

structures to the given transient acceleration time-history. This response is provided by

simulating a group of spring-mass-damper systems sitting on a common rigid base that is forced

to move with the measured acceleration of the subject shock pulse. Each single degree-of-

freedom (SDOF) spring-mass-damper has a different natural frequency; they all have the same

Page 125 of 139

damping factor. The spectrum is formed by plotting the extreme motion (acceleration)

experienced by each mass against its resonance frequency.

The frequency spacing of the resonance frequencies is logarithmic, much like the 1/3 octave

filters used in acoustical analysis. That is, it is a type of proportional bandwidth analysis where

the half-power bandwidth of each SDOF system increases in proportion to its resonance

frequency. The resolution of an SRS is defined by the number of simulated SDOFs included in

the desired analysis span. The percent damping of all the SDOFs is selectable (although most

tests specify 5% damping).

The extreme motion of each mathematically simulated SDOF mass is monitored by several peak

detectors. The extreme positive and negative accelerations are retained during the duration of the

input pulse and after it. Maximum and minimum values captured during the pulse’s duration are

termed Primary extremes. Those found after the pulse has returned to zero are termed Residual

extremes. Specific tests will prescribe whether positive, negative, or extreme absolute values

captured should be displayed. They will further specify Primary, Residual, or combined (maxi-

max) data be plotted.

Selecting different spectrum types will not affect the SRS spectrum.

The Maxi, Pos, and Neg SRS signals from an EDM VCS Shock test:

Page 126 of 139

ATFX API C# Demo display

Page 127 of 139

Order Spectrum
Synchronizing the sampling to the rotating speed allows presentation of measurement results in

the angle and order domains in lieu of the time and frequency domains. An order is simply a

frequency divided by a reference frequency, normally a machine’s shaft-turning frequency. This

means that the order location in an order-normalized spectrum indicates the number of vibration

cycles per shaft revolution. The tracked magnitude (which can be measured using EUpk, EUrms, or

EUrms
2) of an order is the measurement extracted through a tracking filter with its center

frequency located at this order.

An Order Power Spectrum measurement gives a quantitative description of the amplitude, or

power, of the orders in a signal. It provides a good view of all order components of a signal. This

can help you rapidly identify significant forcing mechanisms.

Selecting different spectrum types will affect the Order spectrum.

An order spectrum signal from an EDM DSA Order Tracking test:

ATFX API C# Demo display

Page 128 of 139

Octave Spectrum
The Fractional Octave Filter Analysis function applies a bank of real-time 1/nth octave filters to

the input time streams and generates two types of responses at the same time: 1/Nth octave

spectra, and the RMS time history of each 1/Nth octave filter band. The output of each real-time

filter bank is in fact a 3D waterfall signal that is arranged with the x-axis as logarithmic

frequency and the z-axis as time. Frequency weighting is applied in the frequency axis and time-

weighting is applied in the time axis.

Selecting different spectrum types will affect the Octave spectrum.

An octave signal from an EDM DSA Acoustic Analysis test:

ATFX API C# Demo display

Page 129 of 139

Compution of Frequency Spectrum Signals

Linear Spectrum
Most DSA products use the following steps to compute a linear spectrum:

Step 1

First a window is applied:

x(t) = w(t) x(t)’

where x(t)’ is the original data and x(t) is the data used for the Fourier transform.

Step 2

The FFT is applied to x(t) to compute X(k), as described above.

Step 3

Averaging is applied to X(k). Here Averaging can be either an Exponential Average or Stable

Average. Result is Sx’.

Sx’ = Average (X(k))

Step 4

To get a single-sided spectrum, double the value for symmetry about DC.

Amplitude Correction factor is applied to Sx’ so that the result has an un-biased reading at the

harmonic frequencies.

Sx = 2 · Sx’ / AmpCorr

where AmpCorr is the amplitude correction factor, defined as:

where w(k) is the window weighting function.

This correction will make the reading at specific frequency correct even when a window is

applied. For example, if a 1-volt amplitude sine wave is analyzed by Linear Spectrum with Hann

window, you will get the following spectral shape:

Page 130 of 139

Linear Spectrum of 1-Volt Sine Wave

Auto Power Spectrum
To compute the auto power spectra, the instrument will follow these steps:

Step 1

A window is applied:

x(k) = w(k) x(k)’

where x(k)’ is the original data and x(k) is the data used for a Fourier transform.

Step 2

The FFT is applied to x(t) to compute Sx

Next the so called periodogram method is used to compute the spectra with area correction.

Using Sx.

Step 3

Calculate the Power Spectrum Sxx = Sx Sx* / (AmpCorr)2

Or calculate the Power Spectral Density = Sx Sx* T / EnergyCorr

Or calculate the Energy Spectral Density = Sx Sx* T2 / EnergyCorr

where T is the time duration of the capture. The symbol * is for complex conjugation.

EnergyCorr is a factor for energy correction, which is defined as:

Page 131 of 139

N is the total number of the samples and w(k) is window function.

For any power spectral measurement of the three types listed above, the EU is automatically

chosen as EUrms because only EUrms has a physical meaning related to signal power.

After the power spectra are calculated, the averaging operation will be applied.

Cross Power Spectrum
To compute the cross-power spectral density Gyx between channel x and channel y:

Step 1

Compute the Fourier transform of input signal x(k) and response signal y(k):

Step 2

Compute the instantaneous cross power spectral density:

Syx = Sx* Sy T

Step 3

Average the M frames of Sxx to get averaged PSD Gxx

Gyx’ = Average (Syx)

Step 4

Compute the energy correction and double the value for the single-sided spectra

Gyx = 2 Gyx’ / EnergyCorr

Frequency Response Function
An important application of Dynamic Signal Analysis is characterizing the input-output behavior

of physical systems. In linear systems, the output can be predicted from a known input if the

Frequency Response Function (FRF) of the system is known. The Frequency Response Function,

H(f), relates the Fourier Transform of the input X(f) to the Fourier Transform of the output Y(f)

by the simple equation:

Page 132 of 139

𝒀(𝒇) = 𝑯𝒙𝒚(𝒇)𝑿(𝒇)

Multiplying both sides of this equation by the conjugate of the input spectrum and ensemble

averaging explains the importance of the power and cross power spectra as they allow H(f) to be

measured and calculated.

𝟏

𝑵
∑ 𝒀𝒌(𝒇)𝑿𝒌

∗ (𝒇)

𝑵

𝒌=𝟏

= 𝑮𝒙𝒚(𝒇) = 𝑯𝒙𝒚(𝒇)
𝟏

𝑵
∑ 𝑿𝒌(𝒇)𝑿𝒌

∗ (𝒇)

𝑵

𝒌=𝟏

= 𝑯𝒙𝒚(𝒇)𝑮𝒙𝒙(𝒇)

That is:

𝑯𝒙𝒚(𝒇) =
𝑮𝒙𝒚(𝒇)

𝑮𝒙𝒙(𝒇)

The fact that Y(f) is dependent on the input X(f) is what makes the system linear. When

measuring the input-output behavior of a system, there is always noise present that obscures the

output. An important measure is how much of the output is actually caused by the input and a

linear process. This is indicated by another important real-valued spectrum called the (ordinary)

Coherence Function. This coherence function is also defined in terms of the cross spectrum and

the power spectra. Specifically:

𝜸𝒙𝒚
𝟐 (𝒇) =

𝑮𝒙𝒚(𝒇)𝑮𝒙𝒚
∗ (𝒇)

𝑮𝒙𝒙(𝒇)𝑮𝒚𝒚(𝒇)

Note that the coherence can also be stated as the product of an FRF with its inverse function.

That is, if Hxy measures a process going from input, x, to output, y, Hyx characterizes the same

process, but treats y as the input and x as the output.

𝜸𝒙𝒚
𝟐 (𝒇) = 𝑯𝒙𝒚(𝒇)

𝑮𝒙𝒚
∗

𝑮𝒚𝒚
=𝑯𝒙𝒚(𝒇)𝑯𝒚𝒙(𝒇)

This product definition indicates the coherence represents an “energy round trip” or a reflection

through the process. We apply Gxx to Hxy and get Gxy at the output. Then we conjugate Gxy (to

flip it or reflect x(t) in time) and pass it through Hyx. In a perfect world, this would result in

exactly Gxx as the output of Hyx.

If the system is linear and none of our measurements are contaminated by noise, the trip is

perfect, and we get back everything we put in. That is, the coherence will be exactly 1.0. If the

system is non-linear or if extraneous noise has been interjected, the round-trip will be less

efficient, and the coherence will be less than one (but never more).

Thus, the coherence is always between 0 and 1. A coherence of 1.0 means the output is perfectly

explained by the input (i.e., the system is linear). A coherence of 0 means the output and input

are unrelated. Values in-between state the fraction of measured output power explained by the

measured input power and a linear process. Experienced analysts always use the coherence

measurement to quantify the quality of an FRF measurement at every frequency.

Page 133 of 139

Order Spectrum
The following figure shows conceptually how angle re-sampling can be used to analyze

vibrations from an engine during start up. Once the signal has been transformed into its angle

domain, the FFT can be applied to analyze the order spectrum of the vibrations.

Engine Speed in

RPM

Uniformed Sampled Data

Uniformed Sample Rate

Order Spectrum

Synchronously Sampled Data (sampling rate is

determined by both instantaneous tacho speed

and required analysis frequency range)

Frequency Spectrum

Analog signal overplot with

4X per revolution

tachometer signal

Angular data resampling of a chirp signal

An important concept that must be introduced now is called ΔOrder (delta order). In the FFT

based frequency spectrum analysis, the frequency span and frequency resolution are fixed. The

capability of discriminating frequency components is equal in both low and high frequency. In

rotating machine analysis, we need to have better analysis resolution in the low frequency than

that in high frequency.

For example, if the rotating speed is at 60 RPM, we care if the instrument can tell the difference

between 1Hz (order 1) and 2Hz (order 2); in contrast, if the rotating speed is at 6000 RPM, the

user probably will not care if the instrument can discriminate the measurement between 100Hz

(order 1) and 101Hz.

Page 134 of 139

With the digital resampling technique, the order tracks and order spectrum are extracted based on

a filter with equal ΔOrder instead of equal ΔFrequency. The concept is illustrated in the

following figure:

RPM

Frequency

of Order

Frequency Band

used to extract

the Orders

RPM

Frequency

of Order

Frequency Band

used to extract

the Orders

Constant Band Tracking using

Regular FFT method

Order Tracking using Digital

Resample method

Comparison of constant band tracking and digital re-sampling method

The left figure shows when the order tracks are extracted using conventional FFT method with

fixed resolution, the ΔFrequency of the tracking filter will be fixed; the right figure illustrates

that if the order tracks are extracted using digital resampling, the ΔFrequency tracking filter will

be increased proportionally with the RPM. Obviously, the method of digital resampling is more

desirable in extracting the measurement of orders.

Page 135 of 139

END USER LICENSE AGREEMENT FOR CRYSTAL

INSTRUMENTS SOFTWARE

 --- Updated May 11, 2022

IMPORTANT – READ CAREFULLY. This End User License Agreement (“the Agreement”) is a legally binding agreement between you (“the
Licensee”) and Crystal Instruments Corporation (“Crystal Instruments”) for the Crystal Instruments EDM (Engineering Data Management)

software, PA (Post Analyzer), EDM Cloud, CI Store, EDC (Embedded Device Control), various API, or the embedded software installed in

CoCo, Spider and other series hardware, which includes software components and tools and written documentation (“Software”) that
accompanies this Agreement. This Agreement contains WARRANTY AND LIABILITY DISCLAIMERS.

1. SCOPE OF THE LICENSE RIGHT

1.1 By installing, copying, or using the Software, the Licensee agrees to be bound by the terms of this Agreement.

1.2 Subject to the terms and conditions of this Agreement, Crystal Instruments hereby grants to the Licensee a non-exclusive, non-transferable,

right to use the Software, as ordered by the Licensee, solely for the Licensee’s own use and solely with the Crystal Instruments hardware for
which it is intended.

1.3. The Licensee shall not be entitled to copy or distribute the Software or parts thereof; publish the Software for others to copy; sell, rent, lease,

or lend the Software; or transfer or assign the Software or the license rights to the Software to a third party in any other way whatsoever.
1.4 The Licensee shall, however, be entitled to make back-up copies of the Software to the extent that applicable law expressly permits. The use

of the back-up copy shall be subject to the terms of this Agreement.

1.5 The Licensee shall ensure that the Software is stored in such a manner that third parties do not have access to it and that a third party does not
come into possession of the Software in any other way. The Licensee shall make all employees who have access to the Software fully aware of

this obligation.

2. CHANGES TO THE SOFTWARE

2.1 The Licensee shall not be entitled to make any changes to the Software, or reverse engineer, decompile, or disassemble the Software, except
and only to the extent that applicable law expressly permits.

2.2 In the event of the Licensee or a third party interfering with or making any changes to the Software, Crystal Instruments may terminate the

Agreement with immediate effect, and Crystal Instruments hereby disclaims any liability for the consequences of such interference or change.

3. INTELLECTUAL PROPERTY RIGHTS

3.1 The Software is protected by copyright law and other intellectual property laws. Crystal Instruments or its suppliers own all copyright and any
other intellectual property rights in the Software. The Licensee shall respect Crystal Instruments’ and its suppliers’ rights and the Licensee shall

be fully liable in the event of any violation of these rights, including unauthorized passing on of the Software or any part of it to a third party.

3.2 The Licensee shall not be entitled to break, change or delete any security codes or license keys, nor shall the Licensee be entitled to change or
remove statements in the Software or on the media on which the Software is delivered regarding copyrights, trademarks, or any other proprietary

notices.

3.3 Information and data supplied by Crystal Instruments with the Software, such as, but not limited to, user manuals and documentation, are
proprietary to Crystal Instruments or its suppliers. Such information is furnished solely to assist the Licensee in the installation, operation and use

of the Software and the Licensee agrees not to reproduce or copy such information, except as is reasonably necessary for proper use of the

Software.

4. TRADEMARKS

4.1 The Licensee acknowledges Crystal Instruments’ and its suppliers’ sole ownership of any trademarks including service marks, logos and
other proprietary marks submitted with the Software, and all associated goodwill. This Agreement does not grant the Licensee any rights to the

trademarks of Crystal Instruments and its suppliers.

4.2 The Licensee agrees not to use the trademarks in any manner that will diminish or otherwise damage Crystal Instruments’ or its suppliers’

goodwill in the trademarks. The Licensee agrees not to adopt, use, or register any corporate name, trade name, trademark, domain name, service

mark, certification mark, or other designation similar to, or containing in whole or in part, the trademarks of Crystal Instruments.

5. CLOUD SERVICE PROVIDED BY CRYSTAL INSTRUMENTS

5.1 Data Location When cloud service is enabled, Crystal Instruments Corporation may process and store the customer data anywhere Crystal

Instruments Corporation or its agents maintain facilities and services.
5.1.1 Facilities All facilities used to store and process an application and customer data will adhere to reasonable security standards no less

protective than the security standards at facilities where Crystal Instruments Corporation processes and stores its own information of a similar type.

5.2 Data Processing and Security

5.2.1 Scope of Processing By entering into this agreement, customer instructs Crystal Instruments Corporation to process customer personal data

and other data related to its services only in accordance with applicable law: (a) to provide the cloud services; (b) as further specified by customer
via customer’s use of the cloud services (including the admin console and other functionality of the services); (c) as documented in the form of this

agreement, including these terms; and (d) as further documented in any other written instructions given by customer and acknowledged by Crystal

Instruments Corporation as constituting instructions for purposes of these Terms.
5.2.2 Data Security Crystal Instruments Corporation will use third party technical measures to protect customer data against accidental or unlawful

destruction, loss, alteration, unauthorized disclosure or access. Crystal Instruments Corporation is not responsible or liable for the deletion of or

failure to store any customer data and other communications maintained or transmitted through use of the services. In addition, Crystal Instruments
is not responsible or liable for unauthorized access of the customer data. Customer is solely responsible for securing and backing up data. Crystal

Page 136 of 139

Instruments Corporation does not warrant that the operation of the software or the services will be error-free or uninterrupted. Neither the software
nor the services are designed, manufactured, or intended for high risk activities.

5.2.3 Data Deletion

Deletion by Customer: Crystal Instruments Corporation will enable Customer to delete Customer Data during the Term in a manner consistent with
the functionality of the Services.

Deletion on Termination. On expiry of the Term, Crystal Instruments would delete all Customer Data. Customer acknowledges and agrees that

Customer will be responsible for exporting, before the Term expires, any Customer Data it wishes to retain afterwards.

5.3 Accounts Customer must have an account to use the services, and is responsible for the information it provides to create the account, the

security of passwords for the account, and for any use of its account. If customer becomes aware of any unauthorized use of its password or its
account, Customer will notify Crystal Instruments Corporation as promptly as possible. Crystal Instruments Corporation has no obligation to

provide customer multiple accounts.

5.4 Payment Terms for Cloud Service

5.4.1 Free Quota Certain services are provided to customer without charge up to the fee threshold, as applicable.

5.4.2 Online Billing At the end of the applicable fee accrual period, Crystal Instruments Corporation will issue an electronic bill to customer for

all charges accrued above the fee threshold based on (i) Customer’s use of the Services during the previous fee accrual period; (ii) any additional

units added; (iii) any committed purchases selected; and/or (iv) any package purchases selected. For use above the fee threshold, customer will be

responsible for all fees up to the amount set in the account and will pay all fees in the currency set forth in the invoice. If customer elects to pay by
credit card, debit card, or other non-invoiced form of payment, Crystal Instruments Corporation will charge (and customer will pay) all fees

immediately at the end of the fee accrual period. If customer elects to pay by invoice (and Crystal Instruments Corporation agrees), all fees are due

as set forth in the invoice. Customer’s obligation to pay all fees is non-cancellable. Crystal Instruments Corporation's measurement of Customer’s
use of the services is final. Crystal Instruments Corporation has no obligation to provide multiple bills. Payments made via wire transfer must

include the bank information provided by Crystal Instruments Corporation.

5.4.3 Payment Information Crystal Instruments Corporation will not store any payment related information on its facilities. All payment
information, including recurring payments are stored at a third party facility. Crystal Instruments will not be responsible or liable for unauthorised

access to this information.
5.4.4 Taxes for Cloud Services

(a) Customer is responsible for any taxes, and customer will pay Crystal Instruments Corporation for the services without any reduction for taxes.

If Crystal Instruments Corporation is obligated to collect or pay taxes, the taxes will be invoiced to customer, unless customer provides Crystal
Instruments Corporation with a timely and valid tax exemption certificate authorized by the appropriate taxing authority. In some states the sales

tax is due on the total purchase price at the time of sale and must be invoiced and collected at the time of the sale. If customer is required by law to

withhold any taxes from its payments to Crystal Instruments Corporation, customer must provide Crystal Instruments Corporation with an official

tax receipt or other appropriate documentation to support such withholding. If under the applicable tax legislation the services are subject to local

VAT and the customer is required to make a withholding of local VAT from amounts payable to Crystal Instruments Corporation, the value of

services calculated in accordance with the above procedure will be increased (grossed up) by the customer for the respective amount of local VAT
and the grossed up amount will be regarded as a VAT inclusive price. Local VAT amount withheld from the VAT-inclusive price will be remitted

to the applicable local tax entity by the customer and customer will ensure that Crystal Instruments Corporation will receives payment for its

services for the net amount as would otherwise be due (the VAT inclusive price less the local VAT withheld and remitted to applicable tax authority).
(b) If required under applicable law, customer will provide Crystal Instruments Corporation with applicable tax identification information that

Crystal Instruments Corporation may require to ensure its compliance with applicable tax regulations and authorities in applicable jurisdictions.

Customer will be liable to pay (or reimburse Crystal Instruments Corporation for any taxes, interest, penalties or fines arising out of any mis-
declaration by the Customer.

5.4.5 Invoice Disputes and Refunds Any invoice disputes must be submitted prior to the payment due date. If the parties determine that certain

billing inaccuracies are attributable to Crystal Instruments Corporation, Crystal Instruments Corporation will not issue a corrected invoice, but will
instead issue a credit memo specifying the incorrect amount in the affected invoice. If the disputed invoice has not yet been paid, Crystal Instruments

Corporation will apply the credit memo amount to the disputed invoice and Customer will be responsible for paying the resulting net balance due

on that invoice. To the fullest extent permitted by law, customer waives all claims relating to fees unless claimed within thirty days after charged
(this does not affect any customer rights with its credit card issuer). Refunds (if any) are at the discretion of Crystal Instruments Corporation and

will only be in the form of credit for the services. Nothing in this Agreement obligates Crystal Instruments Corporation to extend credit to any

party.
5.4.6 Delinquent Payments; Suspension Late payments may bear interest at the rate of 1.5% per month (or the highest rate permitted by law, if

less) from the payment due date until paid in full. customer will be responsible for all reasonable expenses (including attorneys’ fees) incurred by

Crystal Instruments Corporation in collecting such delinquent amounts. If customer is late on payment for the services, Crystal Instruments
Corporation may suspend the services or terminate the account(s) and services(s) for breach

5.5 Account Term & Termination

5.5.1 Account Term The term of the account will begin on the effective date and continue until the agreement is terminated.

5.5.2 Termination for Breach Crystal Instruments Corporation may terminate account for breach if: (i) the account(s) is in material breach of the

agreement; or (ii) the customer ceases its business operations or becomes subject to insolvency proceedings and the proceedings are not dismissed
within ninety days.

5.5.3 Termination for Convenience Customer may stop using the cloud service at any time. Customer may terminate the account(s) and services

for its convenience at any time on prior written notice and upon termination, must cease use of the applicable services.
Crystal Instruments Corporation may terminate the account(s) or services for its convenience at any time without liability to Customer.

5.5.4 Effect of Termination If the account(s) or services(s) are terminated, then: (i) the rights granted by one party to the other will immediately

cease; (ii) all fees owed by customer to Crystal Instruments Corporation are immediately due upon receipt of the final electronic bill; (iii) customer
will delete the software, any application and any data; and (iv) upon request, each party will use commercially reasonable efforts to return or destroy

all confidential information of the other party.

5.6 Customer Obligations for Cloud Services

Page 137 of 139

5.6.1 Compliance Customer is solely responsible for account information and data and for making sure its usage of services is consistent with the
terms of the services. Crystal Instruments Corporation reserves the right to review the data for compliance.

5.6.2 Restrictions

Customer will not, and will not allow third parties under its control to: (a) copy, modify, create a derivative work of, reverse engineer, decompile,
translate, disassemble, or otherwise attempt to extract any or all of the source code of the services (except to the extent such restriction is

expressly prohibited by applicable law); (b) sublicense, resell, or distribute any or all of the services; or (c) create multiple account(s) to simulate

or act as a single account or otherwise access the services in a manner intended to avoid incurring fees or exceed usage limits or quotas;
5.6.3 Third Party Components

Third party components (which may include open source software) of the services may be subject to separate license agreements. To the limited

extent a third party license expressly supersedes this agreement, that third party license governs customer’s use of that third party component.

6. EXPORT RESTRICTIONS

The Software may be subject to the export control laws and regulations of the United States. The Licensee must comply with all domestic and
international export control laws and regulations that apply to the Software. These laws include restrictions on destinations, end users, and end

use.

7. THE LICENSEE’S CHOICE OF SOFTWARE

The Software is a standard product, which is delivered by Crystal Instruments with the functions that are specified in the accompanying

documentation. Any assistance provided by Crystal Instruments in connection with the choice of the Software will be based on the Licensee’s
information about the Licensee’s business provided to Crystal Instruments. The Licensee shall be responsible for both the completeness and the

accuracy of such information. Crystal Instruments makes no representations or warranties as to whether the Software meets the functionality or

other requirements of the Licensee and assumes no liability therefor.

8. WARRANTIES AND DISCLAIMERS

8.1 The Licensee shall be under obligation to examine and test the Software immediately after installation of the Software.
8.2 On condition that Crystal Instruments is fully paid for the Software that Customer purchased, Crystal Instruments warrants that the Software

will be free of material defects for a period of 12 months after the delivery of the Software to Licensee (the “Warranty Period”). A defect in the
Software shall be regarded as material if it has a material adverse effect on the functionality of the Software as a whole or if it prevents operation

of the Software. Minor bugs or functions that can be improved are not viewed as a defect.

8.3 If the Licensee documents that there is a material defect in the Software, and notifies Crystal Instruments of the defect within the Warranty
Period, Crystal Instruments will, at its discretion, without charge: (a) deliver a new version of the Software without the material defect, or (b)

remedy the defect, or (c) provide Licensee with instructions for procedures or methods (workarounds) which result in the defect not having a

significant effect on the Licensee’s use of the Software. If Crystal Instruments fails to do any of the above within 30 days (or such longer period

of time as is reasonably necessary given the nature of the defect), the Licensee may terminate this Agreement upon notice to Crystal Instruments,

in which event Crystal Instruments will refund to Licensee a pro-rated portion of the license fee paid by Licensee for the Software (based on the

portion of the Warranty Period remaining as of the date Licensee notified Crystal Instruments of the defect), provided Licensee returns to Crystal
Instruments all the Licensee's versions and copies of the Software, and all manuals and accompanying documentation. This paragraph states the

sole obligations of Crystal Instruments, and the sole remedy of Licensee, for defects in the Software, and the parties shall not be entitled to bring

further claims against each other.
8.4 EXCEPT FOR THE EXPRESS WARRANTY IN SECTION 7.2 ABOVE, THE SOFTWARE IS PROVIDED “AS IS” AND WITHOUT

ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OF ACCURACY,

COMPATIBILITY WITH OTHER SOFTWARE OR HARDWARE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. CRYSTAL INSTRUMENTS DOES NOT WARRANT THAT THE OPERATION OF THE SOFTWARE WILL BE

WITHOUT INTERRUPTIONS, DEFECT-FREE, OR ERROR-FREE OR THAT PRODUCT DEFECTS OR ERRORS CAN OR WILL BE

REMEDIED OR CORRECTED.

9. CONSENT TO USE OF DATA

Licensee agrees that Crystal Instruments and its affiliates may, through Internet connections established by the Software or otherwise, collect
technical information related to Licensee’s use of the Software, including but not limited to the serial numbers of Crystal Instruments hardware

with which the Software is used, email addresses of users, and technical information relating to Licensee’s computers, systems, application

software, and peripherals. Licensee agrees that Crystal Instruments may use such information to facilitate the provision of Software updates and
product support, to improve Crystal Instruments’ products and/or services, or to provide products or services to Licensee. Crystal Instruments

will not, however, publish or disclose such information in a form that may personally identify Licensee.

10. LIABILITY AND LIMITATION OF LIABILITY

10.1 CRYSTAL INSTRUMENTS SHALL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES (INCLUDING BUT NOT LIMITED TO LOSS OF EXPECTED PROFIT, LOSS OF DATA OR THEIR RECOVERY, LOSS OF
GOODWILL OR ANY OTHER SIMILAR DAMAGES), UNDER ANY LEGAL THEORY, IN CONNECTION WITH THE USE OF THE

SOFTWARE OR THE INABILITY TO USE THE SOFTWARE, REGARDLESS OF WHETHER CRYSTAL INSTRUMENTS HAS BEEN

INFORMED OF THE POSSIBILITY OF SUCH DAMAGES.
10.2 IN NO EVENT SHALL THE TOTAL LIABILITY OF CRYSTAL INSTRUMENTS TO LICENSEE ARISING OUT OF OR RELATING

TO THE SOFTWARE EXCEED THE LICENSE FEE PAID BY LICENSEE FOR THE SOFTWARE.

10.3 Crystal Instruments shall not be liable for any errors, defects, or deficiencies which are not related to the Software, nor shall Crystal
Instruments be liable for the integration or interaction between the Software and the Licensee’s existing hardware and software. Crystal

Instruments shall not be liable for the effect of any upgrades on existing hardware, software, or adjustments for the Software regardless of

whether such adjustments were developed by Crystal Instruments.
10.4 Crystal Instruments shall have no liability of any nature relating to software or content of third parties that may be included in the Software.

10.5 The limitations in this Section 9 will apply even in the event of failure of essential purpose of any remedy.

11. GOVERNMENT USERS

Page 138 of 139

The Software and related documentation are "Commercial Items", as that term is defined at 48 C.F.R. §2.101, consisting of "Commercial
Computer Software" and "Commercial Computer Software Documentation", as such terms are used in 48 C.F.R. §12.212 or 48 C.F.R.

§227.7202, as applicable. The Software and documentation are being licensed to U.S. Government end users (a) only as Commercial Items and

(b) with only those rights as are granted to all other end users pursuant to the terms and conditions herein.

12. TERM AND TERMINATION

12.1 The term of this Agreement, and Licensee’s license rights, which may be referred to the activation period of license, shall be as indicated in
Licensee’s order. Such term may be perpetual, or may be of limited duration in the event the Software is provided to Licensee for demonstration,

evaluation or other similar purposes. Licensee acknowledges that if Licensee’s rights are of limited duration, the license key provided to

Licensee to enable use of the Software may cease to allow use of the Software after expiration of such activation period.
12.2 Upon termination of the Agreement for any reason, the Licensee is obliged to immediately return or destroy the Software and all copies

thereof as directed by Crystal Instruments and, if requested by Crystal Instruments, to certify in writing as to the destruction or return of the

Software and all copies thereof.

13. DEFAULTS

If the Licensee is in default of the Agreement, the Licensee’s rights under the Agreement shall terminate with immediate effect, and the Licensee

shall be under an obligation to return the Software, including any back-up copies and accompanying documentation, without a right to repayment.

In addition, Crystal Instruments shall be entitled to damages for any loss, which Crystal Instruments may suffer, in accordance with the general

rules of United States law, including all losses, damages, costs, expenses, etc., without any limitations, incurred or suffered by Crystal
Instruments as a result of claims from any third party in relation to the Licensee’s breach of the Agreement.

14. UPDATES AND RENEW

14.1 For one year after the delivery of the Software, Crystal Instruments will provide Licensee, free of charge, with any updates to the Software

that Crystal Instruments makes generally available to its customers. Licensee may renew such right to receive updates, for additional periods of

one year each, by paying Crystal Instruments the support renewal fee in effect at the time of such renewal. Licensee acknowledges that if
Licensee elects not to renew the right to receive updates, the license key provided to Licensee to enable use of the Software may thereafter cease

to allow installation and use of updates. Notwithstanding the above, Crystal Instruments may charge an additional license fee for any optional
upgrades Crystal Instruments may release, which include significant new functionality and which Crystal Instruments does not make available

without charge to its customers generally.

14.2 Crystal Instruments and the Licensee can agree on the other term about the period of software update after the sales.
14.3 Crystal Instruments has the rights to control the period of software update through various technical means including online activation or

certain algorithm embedded in the license keys. The Licensee has no rights to reverse engineer, decompile, or disassemble the algorithm.

15. CHOICE OF LAW AND COURT OF JURISDICTION

15.1 The Agreement shall be governed by the laws of the State of California, and applicable United States federal law.
15.2 Any suit or proceeding arising out of this Agreement shall be brought only in a court located in Santa Clara County, California, and the

parties submit to the exclusive jurisdiction and venue of such courts; provided, however, that Crystal Instruments may seek injunctive relief for

any breach of this Agreement by Licensee in any court that would otherwise have jurisdiction over Licensee.

16. GENERAL PROVISIONS

16.1 Failure by Crystal Instruments to exercise or enforce any rights hereunder shall not be deemed to be a waiver of any such rights nor affect
the exercise or enforcement thereof at any time or times thereafter.

16.2 If any provision or part of this Agreement is or is held by any court of competent jurisdiction to be unenforceable or invalid, such

unenforceability or invalidity shall not affect the enforceability of any other provision.
16.3 This Agreement constitutes the entire agreement between the parties with respect to its subject matter and supersedes all prior or

contemporaneous understandings regarding that subject matter. No amendment to or modification of this Agreement will be binding unless in

writing and signed by an authorized officer of Crystal Instruments.
16.4 Licensee may not transfer or assign Licensee’s rights under this Agreement to any third party without the prior written consent of Crystal

Instruments, including by operation of law.

17. THIRD PARTY SOFTWARE LICENSE/NOTICES

Crystal Instruments Software uses a number of software products from 3rd parties that are under one of the following licenses, Apache License,
GPL License, LGPL License and MIT License. Please contact Crystal Instruments to obtain the most updated list of 3rd party software that are

incorporated in the Software.

License Type Definition

*Apache License

Apache License is a free software license authored by the Apache Software Foundation (ASF). The Apache License requires preservation of

the copyright notice and disclaimer. Like any free software license, the Apache License allows the user of the software the freedom to use the

software for any purpose, to distribute it, to modify it, and to distribute modified versions of the software, under the terms of the license, without
concern for royalties.

The 2.0 version of the Apache License was approved by the ASF in 2004. The goals of this license revision have been to reduce the number of

frequently asked questions, to allow the license to be reusable without modification by any project (including non-ASF projects), to allow the
license to be included by reference instead of listed in every file, to clarify the license on submission of contributions, to require a patent license

on contributions that necessarily infringe the contributor's own patents, and to move comments regarding Apache and other inherited attribution

notices to a location outside the license terms

Page 139 of 139

*GPL License

The GNU General Public License (GNU GPL or GPL) is the most widely used free software license, which guarantees end users (individuals,

organizations, companies) the freedoms to use, study, share (copy), and modify the software. Software that ensures that these rights are retained is

called free software. The license was originally written by Richard Stallman of the Free Software Foundation (FSF) for the GNU project.

*LGPL License

 LGPL (formerly the GNU Library General Public License) is a free software license published by the Free Software Foundation (FSF). The
LGPL allows developers and companies to use and integrate LGPL software into their own (even proprietary) software without being required

(by the terms of a strong copyleft) to release the source code of their own software-parts.

*MIT License

The MIT License is a permissive free software license originating at the Massachusetts Institute of Technology (MIT)。 The MIT License is

compatible with many copyleft licenses, such as the GNU General Public License (GNU GPL). Any software licensed under the terms of the

MIT License can be integrated with software licensed under the terms of the GNU GPL.

--- Updated May 11, 2022

