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Introduction
Many problems in mechanical 
structure and acoustic applications 
ask for a spectrum analysis method 
generating the frequency values with 
non-uniform frequency resolution. 
In these applications, it is preferable 
to use a logarithmic distribution in 
the frequency axis, i.e., the lower 
frequency band should have a finer 
frequency resolution than the higher 
frequency band. We will show a few 
examples after the introduction. 

In the CI Product Note 001, Dynamic 
Signal Analysis Basics (Reference 
2), we discussed how various spectra 
are calculated. These include the 
Linear Spectrum, Auto Spectrum, 
Cross Spectrum, Phase Spectrum, 
Coherence Function and Frequency 
Response Function. In modern day 
products, all of these spectra are 
calculated based on the Cooley–
Tukey FFT (Fast Fourier Transform) 
algorithm (Reference 1). The basic 
formula of discrete Fourier transform 
is:

where

 ● x(n): samples of time waveform

 ● n: running sample index

 ● N: total number of samples or 
“frame size” 

 ● k: finite analysis frequency, 
corresponding to “FFT bin centers”

 ● X(k): discrete Fourier transform 
of x(k)

  
In most cases, a Radix-2 DIF FFT 
algorithm is used, which requires 
that the total number of samples be a 
power of 2 (total number of samples 
in FFT = 2m, where m is an integer.) 
(Figure 1.1)

A distinct feature of FFT is that it will 
create a uniform resolution across the 

whole range in the frequency domain 
by transforming the time domain 
signal, which is sampled uniformly. 
The frequency resolution, dF, is the 
inverse of T, the total duration of the 
time block signal being transformed. 

For example, if the FFT is applied to 
a block of time signal with duration 
of T = 0.5 seconds, the frequency 
resolution between each adjacent bins 
will be 1/(0.5 sec) = 2Hz across the 
whole range. 

The frequency resolution of all the 
spectra calculated based on FFT shall 
be uniformly distributed across the 
range of analysis. The resolution at 
10Hz is the same to that at 1000Hz. 
This creates a problem when the 
analysis objects require a non-
uniformed frequency resolution, as 
the FFT-based spectrum analysis does 
not fit well.

The computational cost of DFT is 
on the order of N*N where N is the 
block size of the time signal while 
that of FFT is on the order of O(N 
log N). 

One might ask: what if the FFT was 
not invented by Cooley and Tukey in 
1965? Then people would be using 
the much lower efficiency algorithm, 
the Discrete Fourier Transform 
(DFT), to compute the spectrum. 

The advantage of DFT is that the 
resolution of the frequency spectrum 
does not need to be uniformly 
distributed. In fact, the frequency 
resolution can be arbitrarily 
distributed when DFT is calculated. 
It appears that DFT is a better 
approach than FFT because it can 
provide the bins (frequency lines) at 
any frequency point in the spectrum. 
However, the tradeoff for using DFT 
is that the cost of computation is too 
high. 

It would be revolutionary if we could 
identify a method that both maintains 
the computational efficiency of FFT 
efficiency, and creates a frequency 
spectrum compatible with non-
linear distribution of the resolution 
(particularly with logarithmic 
distributions). 

After over twenty years of research 
and development, Crystal Instruments 
successfully introduced and 
implemented the so-called multi-
resolution spectrum analysis in 
many lines of its products, including 
CI Random vibration controller, 
dynamic signal analyzer and modal 
data acquisition. The multi-resolution 
spectrum analysis solves the problem 
mentioned above with enormous 
benefits. This paper shows how it was 
realized and example results. 

Figure 1.1 An example FFT algorithm structure, using a decomposition into half-size FFTs
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Uses Cases for Non-Uniform 
Frequency Resolution
In this section, we present a few 
examples when non-uniform 
frequency resolution is required. 

Music Frequencies
The frequencies of different pitch 
tunings on a typical keyboard of the 
piano is evenly distributed on the 
logarithmic scale instead of the linear 
scale: (Figure 2.1)

The characteristics of music tones of 
any other instruments has the similar 
frequency distribution. Human hear 
the tones of sound and differentiate 
them according to their frequency 
ratio, which is easily described in the 
log scale. 

The following equation gives the 
frequency f of the nth key, as shown 
in the table:

(a’ = A4 = A440 is the 49th key on 
the idealized standard piano)
Alternatively, this can be written as:

Conversely, starting from a frequency 
on an ideal standard piano tuned to 
A440, one obtains the key number 
by:

If a user wants to use a dynamic 
signal analyzer to measure the time 
domain signal of the piano sound and 
provide an accurate estimation of 
the frequency when a tone sounds, it 
would require much finer resolution 
at 27.5Hz than that at 1760Hz 
because human ear compares two 
tones by multiplicative ratio instead 
of additive difference. 

If the frequency resolution of the 
spectrum analyzer is the same, say 
1.0Hz, it will result in less than 0.1% 
of error of a frequency reading of 
1760Hz while the error at 27.5Hz 
can be as large as 3%. This example 
shows that it is better to design a 
signal analyzer that can provide a 
frequency resolution that is uniformly 
distributed in logarithmic scale rather 
than linear scale, which the FFT 
provides. 

Damping estimation for resonance 
frequencies
The structure vibration can be 
decomposed into multiple simple 
models, where the system’s equation 
of motion is

and the corresponding critical 
damping coefficient is

or 

where

is the natural frequency of the system.

Using the natural frequency of               

and the definition of the damping 
ratio above, we can rewrite this as: 

The damping ratio ζ  is 
dimensionless, being the ratio of two 
coefficients of identical units.

Damping is often a dominant 
factor for its dynamic behavior. 

Figure 2.1

Figure 2.2



The damping ratio ζ determines the 
intensity of the resonant oscillation, 
which can be measured by the 
amplitude of the frequency response 
function. While the damping ratios 
of all resonances vary, they are 
mainly determined by the material 
of the objects. For example, plastic 
will have a much higher damping 
ratio than steel. In other words, the 
damping ratio of a given material will 
always fall into a certain range. 

The table in Figure 2.2 shows the 
range of viscous damping ratio ζ 
for certain materials, taken from V. 
Adams and A. Askenazi (Reference 
3).

This table documents the damping 
ratio ranges for certain specified 
materials. 

Now let’s look at how the damping 
ratio is estimated with an FFT 
dynamic signal analyzer. With FFT 
signal analyzer, the Frequency 
Response Function (FRF) between 
response and excitation can be 
estimated. Usually the response is 
an acceleration signal measured by a 
transducer mounted on the structure. 
The excitation signal is the force 
applied to the structure by either an 
impact hammer or a shaker. (Figure 
2.3)

The FRF can be estimated by the 
method described in Reference 2. 
A typical FRF plot including both 
amplitude and phase will look like 
this: (Figure 2.4)

A classic method for determining 
the damping ratio ζ  at a resonance 
in a Frequency Response Function 
(FRF) is to use the “3 dB method” 
(also called “half power method”).  
 
In a FRF, the damping is proportional 
to the width of the resonant peak 
about the peak’s center frequency. By 
looking at the three dB down from 
the peak level, one can determine the 

associated damping. (Figure 2.5)

The “quality factor” (also known as 
“damping factor”) or “Q” is found by 
the equation Q = f0/(f2-f1), where:

 ● f0 = frequency of resonant peak in 
Hertz

 ● f2 = frequency value, in Hertz, 3 
dB down from peak value, higher 
than f0
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Figure 2.3

Figure 2.4

Figure 2.5
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 ● f1 = frequency value, in Hertz, 3 
dB down from peak value, lower 
than f0

In order to calculate the damping 
factor Q = f0/(f2-f1), it is necessary 
to determine three amplitude values 
of FRF: the peak value of FRF at 
f0, and the frequency values of f2 
and f1 when the amplitudes drop to 
half power. The frequency resolution 
plays a critical role in this calculation. 
It is not uncommon for the Q value 
estimate to be off by multiple orders 
of magnitudes from insufficient 
frequency resolution. (Figure 2.6)

While the damping ratios ζ are 
limited to certain ranges based on 
material, the frequency resolution 
requirement for FRF at a lower 
resonance frequencies is much finer. 
For example, suppose we know the 
damping ratio is about 0.001 for a 
certain material. If the resonance 
frequency is 1000Hz, then the 
frequency resolution to differentiate 
f2 and f1 has to be better than 1Hz. 
However, if the resonance frequency 
is 10Hz, the frequency resolution to 
differentiate f2 and f1 has to be better 
than 0.01Hz!

Shaker Vibration Control
In many vibration control testing 
standards, the frequency axis is drawn 
to a logarithmic instead of linear 
scale. Here are a few typical required 
test profiles in Mil-810: (Figure 
514.7C-9 from MIL-STD-810G and 
Figure 514.6C-6)

Before we introduce the method of 
multi-resolution spectrum, all the 
vibration controllers in the market use 
FFT, a method which only provides 
linear frequency scale with uniformed 
resolution. In other words, what we 
do with the controller is not done the 
current industry.

Figure 514.6C-6, Category 7 - Jet aircraft vibration exposure

Figure 2.6

Figure 514.7C-9 from MIL-STD-810G w/ Change 1 – Helicopter Vibration Profile (Sine over 
Random)
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Introducing Multi-
Resolution Spectrum 
Analysis 
The method of multi-resolution 
spectrum developed by Crystal 
Instruments is a modification to the 
single pass FFT. The basic concept 
is that it applies two or more passes 
of FFT to the same incoming time 
streams and create a synthesized 
spectrum in the frequency domain, 
where the frequency resolution 
varies. The following diagram shows 
how it works with two-pass FFT. 
(Figure 3.1)

When multiple channels of time data 
continuously come in, the signal 
processor will take them by blocks 
simultaneously and transform the 
time blocks into frequency domain 
using FFT. At the same time, a 
decimation filter is applied to the 
original time stream and continuously 
generates the time stream at lower 
sampling rate. A second pass of FFT 
is applied to the time signals with 
lower sampling rate and creates the 
FFT spectrum at a finer resolution. 
Finally, the signal processor will 
combine the two banks of spectrum 
into one. The synthesized spectrum 
will have two different frequency 
resolution: one at dF and one at dF/M 
where M is the decimation factor.

The description above uses the most 
succinct language to describe this 
process. The actual implementation is 
very complex. There are many detail 
factors to consider, including:

1. How to deal with the overlapping 
processing?

2. What type of decimation filter to 
use, FIR or IIR?

3. What is the effect of filter delay of 
decimation filter?

4. What is the effect of phase 
distortion of decimation filter?

5. What decimation factor to choose 
from: 2, 4, 8 or any other number?

6. How should the average be applied 
to multiple passes of FFT?

7. What types of signals are adequate 
to this process and what types are 
not?

8. How will the data window be 
applied to multiple passes of time 
domain signals?

All of these details have been 
addressed in the Crystal Instruments 
products when multi-resolution 
spectrum method is applied. The 
software also takes care of the 
appropriate processing, storage, 
display and reporting for multi-
resolution spectrum analysis. 

The decimation process applies and 
generates continuous time streams. 
For this reason, multi-resolution 
spectrum analysis is more adequate 
for continuous signals than of 
transient signals. For example, the 
hammer test uses transient events to 
compute the FRFs, and thus would 
not be a good fit for multi-resolution 
spectrum analysis. 

Applying the Multi-Resolution 
Spectrum Analysis in Structure 

Vibration Analysis
Modal Analysis
A modal test is carried out to compare 
the effect of multi-resolution and 
single resolution spectrum. The 
structure under test is a steel plate 
that is hung vertically using a bungee 
cord to produce a free-free boundary 
condition. The high-quality factor 
(Q) of the plate helps in observing 
the advantages of the multi-resolution 
spectrum. A white noise excitation 
from a modal shaker is used to excite 
the steel plate. The response of the 
plate is captured using a uni-axial 
accelerometer.

The test configuration details are 
described here. A sampling rate of 
51.2 kHz is used for the interested 
analysis frequency range of 23 
kHz. The block size of 4096 yields 
1800 spectral lines which yields a 
frequency resolution of 12.5 Hz. 
A Hann window is used to reduce 
the leakage from the white noise 
excitation and response. A linear 
averaging mode of 32 is used to 
compute the linear spectrum. 

An 8 times finer resolution of 1.56 

Figure 3.1
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Hz is obtained in the low-frequency 
range using the multi-resolution 
spectrum. This is achieved by using a 
large block size which is not needed 
in the high frequency region because 
of the dynamics of the test structure. 
This implementation of different 
resolutions produces better results 
without any increase in the loop time. 
The cutoff frequency dividing the low 
and high-frequency range is 2.8125 
kHz. In this low-frequency region, 
the results from the multi-resolution 
tests are better because of the finer 
frequency resolution. After this cut-
off frequency, the multi-resolution 
and single-resolution spectrum would 
yield comparable results since they 
have the same frequency resolution. 
All other settings, configurations and 
setup are the same for both multi-
resolution and single-resolution tests. 

Following graph illustrates both the 
Multi resolution and Single resolution 
spectrum covering the whole 
frequency range. (Figure 3.2)

Zooming into the high-resolution 
region of the Multi resolution 
spectrum, and comparing to the single 
resolution, following spectrum graph 
is produced. (Figure 3.3)

The image shows that in the cut-
off frequency region, where the 
frequency resolution is much finer 
with the multi-resolution spectrum 
(green), the peaks at several 
resonance frequencies are much 
clearly identified. This is due to 
the much higher block size, which 
ultimately produces higher spectral 
lines. Therefore, the Frequency 
Response Function curve is much 
smoother and neater. 

This also facilitates a more accurate 
calculation of the quality factor 
and peak amplitude of the FRF as 
shown in the table below. The table 
shows that the first four resonance 
frequencies that are present within the 
low-frequency cut-off region have a 

much higher Q and peak amplitude 
with the implemented multi-
resolution spectrum. Also, in the 
high-frequency region, the frequency 
resolution for the single and multi-
resolution spectrums are the same and 
hence the Q and peak amplitude for 
these resonances are also very close. 
(Table 3.1)

The table above shows that the 
amplitude and Q factor estimation 
using regular FFT methods are off 
from their true values by an order 
of magnitude of tens or hundreds. If 
people use these erroneous values 
to derive their conclusion about the 
structure and conduct further analysis, 
such as structure modification and 
optimization, the results will of 

Table 3.1

Figure 3.2

Figure 3.3

Resonant 
Frequency

Q 
estimation 
using MR

Q estimation 
using regular 

FFT

FRF Amplitude 
Estimation using 

MR (g/LBF)

FRF Amplitude 
Estimation using 
regular FFT (g/

LBF)
960.94 Hz 311.069 40.138 12.269 2.832
1418.75 Hz 313.292 120.452 10.687 3.274
1789.06 Hz 97.435 52.326 9.993 5.823
2453.13 Hz 461.059 89.479 60.277 18.42

5350 Hz 126.317 126.19 33.72 34.74
8462.5 Hz 172.296 185.73 32.08 31.47
12725 Hz 94.498 88.965 186.23 187.72
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course be wrong.

Random Vibration Control
The method of multi-resolution 
spectrum analysis can be further 
extended into the control process. 
This means that the output signal 
computation will come from the 
measurement spectrum based on 
multi-resolution spectra.

To increase the control performance 
in the low-frequency range while 
maintaining a reasonable loop time, 
different resolutions can be applied to 
the low and high-frequency range in 
the entire control process.  

In the implementation of Crystal 
Instruments Random controller, 
multi-resolution spectrum analysis 
is applied to all power spectrum 
calculation. It is then extended to 
computing the transfer function 
matrix and generating the drive signal 
that excites the shaker. Because  the 
drive computation at low frequency 
band now contains more detail 
information, it will be able to 
control the structures at much higher 
resolution. 

The user defined profile shall be 
decomposed into 2 bands in the 
initializing period, to get the low 
band reference profile. The Spider 
controller from Crystal Instruments 
will operate on these two profiles 
simultaneously. (Figure 3.4)

In the composite windows below, a 
comparison is made between a test 
with and without multi-resolution 
spectrum control. The FFT line is 
set to 400. The frequency range is 
2 kHz. In the plot, the green line is 
the target profile. The black line is 
the conventional control spectrum 
signal at frequency resolution of 5 
Hz. The blue line is the one with 
multi-resolution turned on. The 
blue line has two resolutions in the 
whole frequency range: in high 
frequency band it is 5 Hz, while in 

low frequency band it is 0.625 Hz. 
(Figure 3.5)

Or we can display the testing results 
separately. (Figure 3.6)

Figure 3.4

Figure 3.5

Figure 3.6
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Obviously, the one with multi-
resolution can achieve much better 
control dynamic range that that of 
without. It is common to see a 20dB 
or more improvement of the control 
dynamic range in the low frequency 
range. 

Conclusion
The conventional signal processing 
algorithms used by the FFT signal 
analyzer may not match the 
requirements needed in the physical 
world. FFT, while having the benefits 
of efficient computation, only 
provides the spectrum with a uniform 
frequency resolution across the whole 
frequency range after the transform. 
On the other hand, many applications 
in the mechanical vibration and 
acoustics ask for finer frequency 
resolution at the lower frequency end. 

The method of multi-resolution 
spectrum developed by Crystal 
Instruments can successfully generate 
a spectrum with two or more stages 
of frequency resolution. It has 
been successfully used in Random 
vibration control, general dynamic 
signal analysis and modal testing, 
offering a 100x improvement to the 
estimation accuracy. 
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