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Introduction
Many problems in mechanical structure and acoustic applications 
ask for a spectrum analysis method generating the frequency values 
with non-uniform frequency resolution. In these applications, it is 
preferable to use a logarithmic distribution in the frequency axis, i.e., 
the lower frequency band should have a finer frequency resolution 
than the higher frequency band. We will show a few examples after 
the introduction. 

In the CI Product Note 001, Dynamic Signal Analysis Basics (Refer-
ence 2), we discussed how various spectra are calculated. These in-
clude the Linear Spectrum, Auto Spectrum, Cross Spectrum, Phase 
Spectrum, Coherence Function and Frequency Response Function. 
In modern day products, all of these spectra are calculated based on 
the Cooley–Tukey FFT (Fast Fourier Transform) algorithm (Refer-
ence 1). The basic formula of discrete Fourier transform is:

where
x(n)   samples of time waveform
n        running sample index
N       total number of samples or “frame size”	
k        finite analysis frequency, corresponding to “FFT bin centers”
X(k)   discrete Fourier transform of x(k)
		
In most cases, a Radix-2 DIF FFT algorithm is used, which requires 
that the total number of samples be a power of 2 (total number of 
samples in FFT = 2m, where m is an integer.)

Figure 1 An example FFT algorithm structure, using a decomposi-
tion into half-size FFTs
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A distinct feature of FFT is that it will create a uniform resolution 
across the whole range in the frequency domain by transforming 
the time domain signal, which is sampled uniformly. The frequency 
resolution, dF, is the inverse of T, the total duration of the time block 
signal being transformed. 

For example, if the FFT is applied to a block of time signal with 
duration of T = 0.5 seconds, the frequency resolution between each 
adjacent bins will be 1/(0.5 sec) = 2Hz across the whole range. 

The frequency resolution of all the spectra calculated based on FFT 
shall be uniformly distributed across the range of analysis. The reso-
lution at 10Hz is the same to that at 1000Hz. This creates a problem 
when the analysis objects require a non-uniformed frequency reso-
lution, as the FFT-based spectrum analysis does not fit well.

The computational cost of DFT is on the order of N*N where N is 
the block size of the time signal while that of FFT is on the order of 
O(N log N). 

One might ask: what if the FFT was not invented by Cooley and 
Tukey in 1965? Then people would be using the much lower ef-
ficiency algorithm, the Discrete Fourier Transform (DFT), to com-
pute the spectrum. The advantage of DFT is that the resolution of 
the frequency spectrum does not need to be uniformly distributed. 
In fact, the frequency resolution can be arbitrarily distributed when 
DFT is calculated. It appears that DFT is a better approach than FFT 
because it can provide the bins (frequency lines) at any frequency 
point in the spectrum. However, the tradeoff for using DFT is that the 
cost of computation is too high. 

It would be revolutionary if we could identify a method that both 
maintains the computational efficiency of FFT efficiency, and cre-
ates a frequency spectrum compatible with non-linear distribution of 
the resolution (particularly with logarithmic distributions). 

After over twenty years of research and development, Crystal In-
struments successfully introduced and implemented the so-called 
multi-resolution spectrum analysis in many lines of its products, 
including CI Random vibration controller, dynamic signal analyzer 
and modal data acquisition. The multi-resolution spectrum analysis 
solves the problem mentioned above with enormous benefits. This 
paper shows how it was realized and example results. 

Uses Cases for Non-Uniform Frequency Resolution
In this section, we present a few examples when non-uniform fre-
quency resolution is required. 

Music Frequencies
The frequencies of different pitch tunings on a typical keyboard of 
the piano is evenly distributed on the logarithmic scale instead of 
the linear scale:

The characteristics of music tones of any other instruments has the 
similar frequency distribution. Human hear the tones of sound and 

differentiate them according to their frequency ratio, which is easily 
described in the log scale. 

The following equation gives the frequency f of the nth key, as 
shown in the table:

(a’ = A4 = A440 is the 49th key on the idealized standard piano)
Alternatively, this can be written as:

Conversely, starting from a frequency on an ideal standard piano 
tuned to A440, one obtains the key number by:

If a user wants to use a dynamic signal analyzer to measure the time 
domain signal of the piano sound and provide an accurate estima-
tion of the frequency when a tone sounds, it would require much 
finer resolution at 27.5Hz than that at 1760Hz because human ear 
compares two tones by multiplicative ratio instead of additive differ-
ence. 

If the frequency resolution of the spectrum analyzer is the same, 
say 1.0Hz, it will result in less than 0.1% of error of a frequency 
reading of 1760Hz while the error at 27.5Hz can be as large as 3%. 
This example shows that it is better to design a signal analyzer that 
can provide a frequency resolution that is uniformly distributed in 
logarithmic scale rather than linear scale, which the FFT provides. 

Damping estimation for resonance frequencies
The structure vibration can be decomposed into multiple simple 
models, where the system’s equation of motion is

and the corresponding critical damping coefficient is

or 

where

is the natural frequency of the system.

Using the natural frequency of                                     and the definition 
of the damping ratio above, we can rewrite this as: 



PAGE 3 | CRYSTAL INSTRUMENTS

The damping ratio ζ  is dimensionless, being the ratio of two coef-
ficients of identical units.

Damping is often a dominant factor for its dynamic behavior. The 
damping ratio ζ determines the intensity of the resonant oscillation, 
which can be measured by the amplitude of the frequency response 
function. While the damping ratios of all resonances vary, they are 
mainly determined by the material of the objects. For example, plas-
tic will have a much higher damping ratio than steel. In other words, 
the damping ratio of a given material will always fall into a certain 
range. 

The table below shows the range of viscous damping ratio ζ for cer-
tain materials, taken from V. Adams and A. Askenazi (Reference 3): 

This table documents the damping ratio ranges for certain specified 
materials. 

Now let’s look at how the damping ratio is estimated with an FFT 
dynamic signal analyzer. With FFT signal analyzer, the Frequency 
Response Function (FRF) between response and excitation can be 
estimated. Usually the response is an acceleration signal measured 
by a transducer mounted on the structure. The excitation signal is 
the force applied to the structure by either an impact hammer or a 
shaker. 

The FRF can be estimated by the method described in Reference 
2. A typical FRF plot including both amplitude and phase will look 
like this:

A classic method for determining the damping ratio ζ  at a reso-
nance in a Frequency Response Function (FRF) is to use the “3 
dB method” (also called “half power method”).  
 
In a FRF, the damping is proportional to the width of the resonant 
peak about the peak’s center frequency. By looking at the three 
dB down from the peak level, one can determine the associated 
damping.

The “quality factor” (also known as “damping factor”) or “Q” is found 
by the equation Q = f0/(f2-f1), where:

●● f0 = frequency of resonant peak in Hertz

●● f2 = frequency value, in Hertz, 3 dB down from peak value, higher 
than f0

●● f1 = frequency value, in Hertz, 3 dB down from peak value, lower 
than f0

In order to calculate the damping factor Q = f0/(f2-f1), it is necessary 
to determine three amplitude values of FRF: the peak value of FRF 
at f0, and the frequency values of f2 and f1 when the amplitudes 
drop to half power. The frequency resolution plays a critical role in 
this calculation. It is not uncommon for the Q value estimate to be off 
by multiple orders of magnitudes from insufficient frequency resolu-
tion.

While the damping ratios ζ are limited to certain ranges based on 
material, the frequency resolution requirement for FRF at a lower 
resonance frequencies is much finer. For example, suppose we 
know the damping ratio is about 0.001 for a certain material. If the 
resonance frequency is 1000Hz, then the frequency resolution to 
differentiate f2 and f1 has to be better than 1Hz. However, if the 
resonance frequency is 10Hz, the frequency resolution to differenti-
ate f2 and f1 has to be better than 0.01Hz!
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Shaker Vibration Control
In many vibration control testing standards, the frequency axis is 
drawn to a logarithmic instead of linear scale. Here are a few typical 
required test profiles in Mil-810:

Figure 514.7C-9 from MIL-STD-810G w/ Change 1 – Helicopter Vi-
bration Profile (Sine over Random)

Figure 514.6C-6, Category 7 - Jet aircraft vibration exposure

Before we introduce the method of multi-resolution spectrum, all the 
vibration controllers in the market use FFT, a method which only 
provides linear frequency scale with uniformed resolution. In other 
words, what we do with the controller is not done the current indus-
try.

Introducing Multi-Resolution Spectrum Analysis 
The method of multi-resolution spectrum developed by Crystal 
Instruments is a modification to the single pass FFT. The basic 
concept is that it applies two or more passes of FFT to the same 
incoming time streams and create a synthesized spectrum in the 
frequency domain, where the frequency resolution varies. The fol-
lowing diagram shows how it works with two-pass FFT.

When multiple channels of time data continuously come in, the sig-
nal processor will take them by blocks simultaneously and transform 
the time blocks into frequency domain using FFT. At the same time, 
a decimation filter is applied to the original time stream and continu-
ously generates the time stream at lower sampling rate. A second 
pass of FFT is applied to the time signals with lower sampling rate 
and creates the FFT spectrum at a finer resolution. Finally, the signal 
processor will combine the two banks of spectrum into one. The syn-
thesized spectrum will have two different frequency resolution: one 
at dF and one at dF/M where M is the decimation factor.

The description above uses the most succinct language to describe 
this process. The actual implementation is very complex. There are 
many detail factors to consider, including:

1.	 How to deal with the overlapping processing?
2.	 What type of decimation filter to use, FIR or IIR?
3.	 What is the effect of filter delay of decimation filter?
4.	 What is the effect of phase distortion of decimation filter?
5.	 What decimation factor to choose from: 2, 4, 8 or any other num-

ber?
6.	 How should the average be applied to multiple passes of FFT?
7.	 What types of signals are adequate to this process and what 

types are not?
8.	 How will the data window be applied to multiple passes of time 

domain signals?

All of these details have been addressed in the Crystal Instruments 
products when multi-resolution spectrum method is applied. The 
software also takes care of the appropriate processing, storage, dis-
play and reporting for multi-resolution spectrum analysis. 

The decimation process applies and generates continuous time 
streams. For this reason, multi-resolution spectrum analysis is more 
adequate for continuous signals than of transient signals. For ex-
ample, the hammer test uses transient events to compute the FRFs, 
and thus would not be a good fit for multi-resolution spectrum analy-
sis. 

Applying the Multi-Resolution Spectrum Analysis in Struc-
ture Vibration Analysis
Modal Analysis
A modal test is carried out to compare the effect of multi-resolution 
and single resolution spectrum. The structure under test is a steel 
plate that is hung vertically using a bungee cord to produce a free-
free boundary condition. The high-quality factor (Q) of the plate 
helps in observing the advantages of the multi-resolution spectrum. 
A white noise excitation from a modal shaker is used to excite the 
steel plate. The response of the plate is captured using a uni-axial 
accelerometer.

The test configuration details are described here. A sampling rate of 
51.2 kHz is used for the interested analysis frequency range of 23 
kHz. The block size of 4096 yields 1800 spectral lines which yields 
a frequency resolution of 12.5 Hz. A Hann window is used to reduce 
the leakage from the white noise excitation and response. A linear 
averaging mode of 32 is used to compute the linear spectrum. 

An 8 times finer resolution of 1.56 Hz is obtained in the low-frequency 
range using the multi-resolution spectrum. This is achieved by using 
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a large block size which is not needed in the high frequency region 
because of the dynamics of the test structure. This implementation 
of different resolutions produces better results without any increase 
in the loop time. The cutoff frequency dividing the low and high-
frequency range is 2.8125 kHz. In this low-frequency region, the 
results from the multi-resolution tests are better because of the finer 
frequency resolution. After this cut-off frequency, the multi-resolu-
tion and single-resolution spectrum would yield comparable results 
since they have the same frequency resolution. All other settings, 
configurations and setup are the same for both multi-resolution and 
single-resolution tests. 

Following graph illustrates both the Multi resolution and Single reso-
lution spectrum covering the whole frequency range. 

Zooming into the high-resolution region of the Multi resolution spec-
trum, and comparing to the single resolution, following spectrum 
graph is produced.

The image shows that in the cut-off frequency region, where the 
frequency resolution is much finer with the multi-resolution spec-
trum (green), the peaks at several resonance frequencies are much 
clearly identified. This is due to the much higher block size, which 
ultimately produces higher spectral lines. Therefore, the Frequency 
Response Function curve is much smoother and neater. 

This also facilitates a more accurate calculation of the quality fac-
tor and peak amplitude of the FRF as shown in the table below. 
The table shows that the first four resonance frequencies that are 
present within the low-frequency cut-off region have a much higher 
Q and peak amplitude with the implemented multi-resolution spec-
trum. Also, in the high-frequency region, the frequency resolution for 
the single and multi-resolution spectrums are the same and hence 
the Q and peak amplitude for these resonances are also very close.

The table above shows that the amplitude and Q factor estimation 

using regular FFT methods are off from their true values by an order 
of magnitude of tens or hundreds. If people use these erroneous 
values to derive their conclusion about the structure and conduct 
further analysis, such as structure modification and optimization, the 
results will of course be wrong.

Random Vibration Control
The method of multi-resolution spectrum analysis can be further ex-
tended into the control process. This means that the output signal 
computation will come from the measurement spectrum based on 
multi-resolution spectra.

To increase the control performance in the low-frequency range 
while maintaining a reasonable loop time, different resolutions can 
be applied to the low and high-frequency range in the entire control 
process.  

In the implementation of Crystal Instruments Random controller, 
multi-resolution spectrum analysis is applied to all power spectrum 
calculation. It is then extended to computing the transfer function 
matrix and generating the drive signal that excites the shaker. Be-
cause  the drive computation at low frequency band now contains 
more detail information, it will be able to control the structures at 
much higher resolution. 

The user defined profile shall be decomposed into 2 bands in the 
initializing period, to get the low band reference profile. The Spider 
controller from Crystal Instruments will operate on these two profiles 
simultaneously.

In the composite windows below, a comparison is made between a 
test with and without multi-resolution spectrum control. The FFT line 
is set to 400. The frequency range is 2kHz. In the plot, the green line 
is the target profile. The black line is the conventional control spec-
trum signal at frequency resolution of 5Hz. The blue line is the one 
with multi-resolution turned on. The blue line has two resolutions in 
the whole frequency range: in high frequency band it is 5Hz, while in 
low frequency band it is 0.625Hz.

Resonant 

Frequency

Q estimation 

using MR

Q estimation 

using 

regular FFT

FRF Amplitude 

Estimation using 

MR (g/LBF)

FRF Amplitude 

Estimation using 

regular FFT (g/LBF)

960.94 Hz 311.069 40.138 12.269 2.832

1418.75 Hz 313.292 120.452 10.687 3.274

1789.06 Hz 97.435 52.326 9.993 5.823

2453.13 Hz 461.059 89.479 60.277 18.42

5350 Hz 126.317 126.19 33.72 34.74

8462.5 Hz 172.296 185.73 32.08 31.47

12725 Hz 94.498 88.965 186.23 187.72
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Or we can display the testing results separately.

Obviously, the one with multi-resolution can achieve much better 
control dynamic range that that of without. It is common to see a 
20dB or more improvement of the control dynamic range in the low 
frequency range. 

Conclusion
The conventional signal processing algorithms used by the FFT sig-
nal analyzer may not match the requirements needed in the physical 
world. FFT, while having the benefits of efficient computation, only 
provides the spectrum with a uniform frequency resolution across 
the whole frequency range after the transform. On the other hand, 
many applications in the mechanical vibration and acoustics ask for 
finer frequency resolution at the lower frequency end. 

The method of multi-resolution spectrum developed by Crystal In-
struments can successfully generate a spectrum with two or more 
stages of frequency resolution. It has been successfully used in 
Random vibration control, general dynamic signal analysis and 
modal testing, offering a 100x improvement to the estimation ac-
curacy. 
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