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Figure 1.1 

An important application of Dynamic 
Signal Analysis is characterizing the 
input-output behavior of physical 
systems. In linear systems, the output 
time history, y(t), can be predicted 
from a known input time history, x(t) 
if the Frequency Response Function 
(FRF) of the system is known. 

The Fourier Transform and its inverse 
relate the observable time histories 
and their spectra. Specifically:

A linear process is defined by its 
Impulse Response, hxy(τ), or by the  
Fourier Transform of its Impulse 
Response which is called the 
Frequency Response Function, Hxy(f). 
In the time domain the system output, 
y(t), is predicted by the convolution 
of x(t) and Hxy(τ). Specifically: 
(Figure 1.1)

This same relationship is far simpler 
to describe in the frequency domain. 
The Frequency Response Function, 
Hxy(f), relates the Fourier Transform 
of the input X(f) to the Fourier 
Transform of the output Y(f) by 
simple multiplication: 

Multiplying both sides of this 
equation by the conjugate of the input 
spectrum and ensemble averaging 
explains the importance of the power 
and cross power spectra as they allow 
Hxy(f) to be directly measured. That 
is: 

In simpler notation:

… where Gxx(f) is the average 

auto-spectrum of X and Gxy(f) is the 
averaged cross spectrum between 
input X and output Y. From which:

The fact that Y(f) is directly 
dependent on the input X(f) is what 
makes the system linear. However, 
when measuring the input-output 
behavior of a system, there is always 
noise present that obscures the 
input and output measurements. An 
important measure is how much 
of the measured output is actually 
caused by the measured input and 
a linear process best estimated by 
Hxy(f). This is indicated by another 
important spectrum called the 
(ordinary) Coherence Function. This 
Coherence Function is also defined in 
terms of the cross spectrum and the 
power spectra. Specifically: 

and positive and limited between 
0 and 1. Note that the coherence 
formulation can also be stated as the 
product of an FRF with its inverse 
function. That is, if Hxy(f) measures 
a process going from input, x, to 
output, y, Hyx(f) characterizes the 

same process, but treats y as the input 
and x as the output. (Figure 1.2)

This product definition indicates the 
coherence characterizes an “energy 
round trip” or a reflection through 
the process. We apply Gxx to Hxy 
and get Gxy at the output. Then we 
conjugate Gxy (equivalent to flipping 
or reflecting x(t) in time) and pass it 
back through Hyx. In a perfect world, 
this would result in exactly Gxx as the 
output of Hyx. 

If the system is linear and none of 
our measurements are contaminated 
by noise, the round-trip is perfect and 
we get back everything we put in. 
That is, the Coherence will be exactly 
1.0. If the system is non-linear or if 
extraneous noise has been interjected 
at the input or output, the round-
trip will be less efficient and the 
Coherence will be less than one (but 
never more).
 
Thus, the coherence magnitude at 
every frequency is always between 
0 and 1. A coherence of 1.0 means 
the output is perfectly explained by 
the input (i.e. the system is linear and 
the Hxy(f) measurement is perfect). 
A coherence of 0 means the output 
and input are totally unrelated. 
Values in-between state the fraction 

Figure 1.2 
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of measured output power explained 
by the measured input power and 
a linear process. Departures from 
unity can indicate input noise, 
output noise, a non-linear process 
or any combination of these things. 
Experienced analysts always use the 
Coherence measurement to quantify 
the quality of an FRF measurement at 
every frequency.

Note that ensemble averaging must 
be used for the Coherence to have 
meaning. The coherence computation 
for a single set of input and output 
“snapshots” will always evaluate 
to 1.0 at every frequency. This can 
be understood by expanding the 
Coherence equation to show the 
averaging process. (Figure 1.3)

Now if we specify a single frame 
measurement (N=1):

Clearly then, the Coherence becomes 
more definitive as the number of 
spectra averaged increases. We will 
revisit this point shortly. (Figure 1.4)

Let’s examine the effect of 
experiment-unrelated input and 
output noise on the Coherence 
function. As shown above, 
unintentional noise may be added to 
the input and output signals measured 
by our analyzer. This may be caused 
by a bad cable, sensor frailties 
or a host of other experimental 
“gremlins”. Further, if the process 
being tested exhibits some non-linear 
behavior, this will generate harmonics 
and other distortion products at the 
output; these appear as components 
of the output noise signal, o(t).

While the system on test sees an 
input, x(t), and produces an output, 
y(t), the analyzer measures the noise-
contaminated signals:

Figure 1.3 

Figure 1.4 

Figure 1.5 
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The measured power spectra and the 
cross spectrum evaluate to: (Figure 
1.5)

In the (very likely) event that the 
input noise, i(t), is uncorrelated 
(unrelated) to the input stimulus, 
x(t), and the output noise, o(t), is 
completely unrelated to the system 
response, y(t), and i(t) and o(t) are 
uncorrelated, then all of cross spectra 
except Gxy(f) have an expected value 
of zero. Thus we find: 

Computing the coherence from these 
results in: (Figure 1.6)

That is, noise contamination of either 
signal (or equivalent output noise due 
to a non-linear process) causes the 
coherence to be reduced from that of 
a noise-free measurement. But, there 
is no way to distort or contaminate 
the signals that will cause γ2(f) to 
exceed unity. 
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