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Verifying the robustness of products 
(or their packaging) by subjecting 
them to shaker-induced vibration is 
an accepted method of “improving 
the breed”. While shock bumps and 
sine sweeps are intuitively obvious, 
random shakes with their jumps 
and hissing are anything but. Even 
the language of a random test is 
confusing at first meeting. Let’s try to 
improve upon that first introduction 
to random signals!

To start with, a random time-history 
is simply a signal that cannot be 
precisely described by a simple 
equation in time; it can only be 
described in terms of probability 
statistics. Two of the most important 
of these statistics are the mean and 
the variance. The mean, μ, is the 
central or average value of a time 
history, x(t). It is the DC component 
of the signal and is defined by the 
equation: (Figure 1.1)

The variance, σ2, is the averaged 
(unsigned) indication of the signal’s 
AC content, its instantaneous 
departure from the mean value. It is 
defined by: (Figure 1.2)

The square root of the variance, σ, is 
termed the standard deviation.

These functions are closely related 
to a third time-domain statistic, the 
mean-square, defined as: (Figure 1.3)

The square root of the mean-square 
is the familiar root mean-square 
(RMS) value, commonly used to 
characterize AC voltage and current, 
as well as the acceleration intensity 
of a random shake test. Because these 
statistics are so frequently measured 
from signals with a zero-valued mean 
(no DC), the differentiation between 
standard deviation and RMS and 
between variance and mean-square 
has become unfortunately blurred in 
modern discussions.

The Control spectrum you measure 

during a random shake test is also a 
statistical description. The measured 
variable is (normally) the output of 
an accelerometer mounted to the 
shaker table. The sensor’s voltage 
output is scaled to engineering 
units of acceleration, typically 
gravitational units (g’s) and sampled 
at a fixed interval, Δt. This time-
sampled history is transformed to 
the frequency domain using the Fast 
Fourier Transform (FFT). In this 
process, a series of “snapshots” from 
the continuous time waveform are 
taken and dealt with sequentially. 

(Figure 1.4)

Each snapshot is multiplied by 
another sampled time history of 
the same length, called a window 
function. The multiplied window 
function serves to smoothly taper 
the beginning and end of each time 
record to zero, so that the product 
appears to be a snapshot from a 
signal that is exactly periodic in 
the N Δt samples observed. This is 
necessary to preclude a spectrum-
distorting convolution error that the 
FFT would otherwise make. The 

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4



PAGE 3 | CRYSTAL INSTRUMENTS

resulting discrete complex spectrum 
has nominal resolution of Δf = 1/
NΔt and g amplitude units. However, 
every spectral amplitude computed 
is actually greater than what would 
result from detecting the amplitudes 
of a bank of perfect “brickwall” 
analog filters of resolution Δf.   

Each complex spectrum is prepared 
for averaging by multiplying each 
complex amplitude it by its own 
conjugate. This results in a real-
valued “power” spectrum with 
g2 amplitude units. To correct the 
over-estimated amplitude, each 
squared magnitude is divided by 
the equivalent noise bandwidth, kΔf 
(Hz) of the filters synthesized by 
the FFT. The value of the constant, 
k, is determined by the shape of the 
window function. The most common 
of these is called a Hann window 
(sometimes Von Hann or Hanning) 
for which k equals 1.5. The resulting 
amplitude units are now g2/Hz and 
the spectrum is said to have Power 
Spectral Density scaling. 

The final step in the process is 
to ensemble average the current 
spectrum with all of those that have 
preceded it. The resulting average 
is called a Power Spectral Density 
(PSD) and it has the (acceleration) 
units of g2/Hz. The averaging is 
done using a moving or exponential 
averaging process that allows 
the averaged spectrum to reflect 
any changes that occur as the test 
precedes, but always involves the 
most recent DNΔt/2 seconds of the 
signal. D is the specified number of 
degrees-of-freedom (DOF) in the 
average, numerically equal to twice 
the number of (non-overlapping) 
snapshots processed.

If the snapshots are taken frequently 
enough not to miss any time data, the 
process is said to be operating in real 
time (as it must to control the signal’s 
content). If the process runs faster, 
the snapshots can actually partially 

overlap one-another in content. 
When the successive windows 
overlap, the resulting complex spectra 
contain redundant information. 
The degrees-of-freedom setting is 
intended to specify the amount of 
unique (statistically independent) 
information contained in the averaged 
Control spectrum. When overlap 
processing is allowed, the number of 
spectra averaged must be increased 
by a factor of [100/(100-% overlap)] 
to compensate for this redundancy.

The resulting PSD describes the 
frequency content of the signal. 
It also echoes the mean and the 
variance. The (rarely displayed) DC 
value of the PSD is the square of the 
mean. For a controlled acceleration 
(or velocity) shake, this must always 
be zero – the device under test 
cannot depart from the shaker during 
a successful test! Since the mean 
is zero, the RMS value is exactly 
equal to the standard deviation, σ. 
The area under the PSD curve is the 
signal’s variance (its “power”), σ2. 
The term power became attached 
to such “squared spectra” when 
the calculation was first applied to 
electrical voltages or currents. (Recall 
that the power dissipated by a resistor 
can be evaluated as i2R or E2/R.)

It bears mentioning that long before 
real-time control of a random 
vibration signal was possible, random 
vibration test were conducted using 
a “white- noise” generator and a 
manually adjusted equalizer to 
shape the spectrum. Filter-based 
signal analysis was employed with 
a human “in the loop” to achieve 
some semblance of spectral control. 
In that same era, the PSD was 
formally defined by the classic  

Wiener-Khintchine relationship as 
the (not very fast!) Fourier transform 
of an Autocorrelation function. An 
autocorrelation is defined by the 
equation: (Figure 1.5)

In essence, the autocorrelation 
averages the time history multiplied 
by a time-delayed image of itself. 
The symmetric function of time 
that results was often used to detect 
periodic components buried in a 
noisy background. The “squaring” of 
an autocorrelation would reproduce 
the periodic signal with greater 
amplitude, rising above the random 
noise background. In the process, 
it echoed the signal’s mean and 
variance. When you autocorrelate 
x(t), the Rxx(τ) amplitude at lag time 
τ= 0 is equal to σ2 + μ2. As the lag 
time approaches either plus or minus 
infinity, the correlation amplitude 
collapses to μ2. Thus if the signal is 
purely random, the autocorrelation 
amplitude varies smoothly between 
the mean-square and the square of the 
mean. 

Clearly, the mean and variance 
dominate statistical measurements in 
both the time and frequency domains. 
They are also reflected by so-called 
amplitude domain measurements. 
The most basic of these is called a 
histogram. To measure a histogram, 
break a signal’s potential amplitude 
range into a contiguous series of 
N amplitude categories (i.e. x is 
between a and b) and associate a 
counter with each category. Initialize 
the measurement process by zeroing 
all of the counters. Take a sample 
from the time-series in question, find 
the category its amplitude fits within 
and, increment the associated counter 
by one. Repeat this action thousands 

Figure 1.5
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of time. Plot the counts retained 
(vertically) against their category 
amplitude (horizontally). You have 
just measured a histogram. (Figure 
1.6)

A histogram may also be used 
to graphically present tabular 
measurements from an experiment 
or even gaming odds. For example, 
consider tossing dice. If you toss a 
single (honestly constructed) die, any 
one of its six numbered faces may 
face up and the odds are 1 in 6 that 
any specific number will be rolled. 
As a histogram, this amounts to 1 
count for each of the possible tossed 
numbers, 1 through 6, a rectangular 
distribution. Now consider rolling 
two dice (or one die twice) and 
recording their sum. There are now 
36 possible combinations that might 
be rolled with sums spanning 2 to 12. 
However, the 11 different possible 
sums are not equally probable. There 
are six combinations totaling 7, five 
totaling either 6 or 8, four totaling 
5 or 9, three totaling 4 or 10, two 
totaling 3 or 11 and only one way to 
roll either a 2 or a 12. The histogram 
now takes on a triangular shape. 
Finally, consider what happens when 
you roll three dice. The number of 
combinations increases to 216 with 
16 different possible sums. The 
likelihood of a 10 or 11 is 27 times as 
probable as rolling a 3 or an 18. With 
three dice in the game, the histogram 
takes on a bell-shaped curve. These 
three histograms are plotted below for 
comparison. (Figure 1.7)

The three histograms have different 
independent-variable spans. If we 
choose to plot the averaged (mean) 
number tossed instead of the sums, 
we can align the three histograms 
horizontally, making comparisons 
between the three plots simpler. If 
we now change the vertical scale of 
each trace so that each curve bounds 
a (dimensionless) unit area, we 
have converted the three histograms 
to Probability Density Functions 

(PDF). Note that if the independent 
variable (horizontal axis) carries 
an engineering unit, the vertical 
(probability density) axis must bear 
the reciprocal of that unit to render 
the bounded area dimensionless. 
(Figure 1.8)

Several important things happen 
when a histogram is scaled as a 
probability density function. Since 
the area under this p(x) curve is 
1.0, and the curve spans all known 
possibilities of the independent 
variable, x, it may be used to evaluate 

Figure 1.6

Figure 1.7

Figure 1.8



PAGE 5 | CRYSTAL INSTRUMENTS

the probability of x falling between 
two known bounds, say Xa and Xb.

That is, since:

defines the probability that -∞ ≤ x ≤ 
∞, 

The definite integral

defines the probability that x is 
between Xa and Xb in value.

Of equal importance, the first two 
integral moments of the PDF return 
the mean and variance of the signal 
p(x) characterizes. Specifically:

Two higher moments are pertinent 
to controlled random vibration tests. 
These are:

a measure of the signal’s amplitude 
symmetry (about the mean), and:

which describes the spread of the 
extreme-amplitude “tails” of the PDF.

Before we continue, reflect for a 
moment on the three PDFs plotted 
from our dice-throwing model. 
Note the rapid convergence from 
a rectangular PDF towards a bell-
shaped one as independent variables 
are added or averaged together. This 
clear progression is observed in 
all manner of natural phenomena. 
Since most occurrences involve the 
summation or integration of many 

independent component happenings, 
many things in nature tend to have 
bell-shaped PDFs. Pass a signal of 
almost any PDF shape through a filter 
or averaging process (be it electrical 
or mechanical) and the output 
will tend strongly to the naturally 
occurring mean-centered symmetric 
bell curve.

Johann Carl Friedrich Gauss (1777-
1855) had a strong and intuitive 
understanding of this natural 
tendency. (Figure 1.9) He proposed 
a mathematical model for the bell-
shaped p(x) that has stood the test of 
centuries and is at the center of our 
understanding of random signals and 
variables. His classic definition for 
p(x) is:

Figure 1.9

Figure 1.10
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The classic Gaussian PDF is plotted 
above. (Figure 1.10) Note that the 
“tails” actually extend to ±∞. To 
appreciate this point, we repeat 
the Gaussian PDF plot using a 
logarithmic vertical axis. This scaling 
is frequently done in vibration work, 
but rarely shown in statistic texts. 
(Figure 1.11)

If an experimental measurement 
matches the Gaussian PDF model, 
the Gaussian model can then be 
used to draw many important 
inferences about the measurement. 
Many statistical curve-matching 
tests are available to establish if a 
measurement is Gaussian. These 
include the Kolmogorov-Smirnov 
(KS), Shapiro-Wilk and Anderson-
Darling tests. For practical purposes, 
most well-fixtured and well-
conducted random shake tests will 
produce data that pass any of these 
model-matching statistical tests for 
Gaussian behavior. 

Important conclusions that result 
from deeming a measured Control 
acceleration Gaussian include:

 ● The random Control acceleration 
signal spends 68.3% of its time 
within ± 1σ, 95.5% within ± 
2σ, and 99.7% within ± 3σ. For 
practical purposes, the signal has 
a crest factor (peak to RMS ratio) 
of 3.

 ● The Skew is μ(3σ2+μ2) = 0  (as μ 
is 0)

 ● The Kurtosis is 3σ4 + 6σ2μ2 + μ4 = 
3σ4 (for the same reason)

Further, we find that if a time-history 
is Gaussian, the real and imaginary 
components of its Fourier Transform 
are also (independently) Gaussian 
distributed variables. Further, the 
vector resultant magnitude of those 

Gaussian components exhibits a 
different PDF; the spectral magnitude 
is Rayleigh distributed. Of far greater 
interest is that the sum of the squares 
of the real and imaginary components 
(the power spectrum magnitude) is a 
Chi-square (χ2) distributed variable, 
as is the variance. (Figure 1.12)

Knowing that the Control PSD has 

χ2 distributed spectral magnitude 
allows construction of a confidence 
interval about any g2/Hz value. The 
curves above illustrate statistically 
reasonable bands of variation (±dB) 
for a g2/Hz spectral value with regard 
to two variables: Confidence and 
Degrees-of-Freedom. Statistical 
Confidence is usually expressed as 
a percentage. For example, 99.9% 

Figure 1.12

Figure 1.11
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Confidence is shorthand for saying 
99.9% of the spectral Lines in a PSD 
will be within the curve-specified 
upper and lower bounds. So if you 
average using 200 DOF, you are 90% 
certain that all of your PSD measured 
magnitudes are correct within ± 1 dB.

We have just begun to scratch the 
surface of the things that can be 
learned and ascertained about random 
signals with Gaussian mean and Chi-
square variance.  But, that is the stuff 
of future postings! 
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